Income, poverty and longevity: evidence from Europe.

Chiara Malavasi (University of Mannheim)

SAMPIEU Workshop, July 2021

Poverty and inequality have an impact on multiple aspects of life, including *health* and *longevity* (Marmot, 2015).

Research efforts recently focused on quantifying such impact.

Modern survey data can be exploited to estimate *life expectancy*. This can serve as intuitive *summarising measure* of well-being and inequality.

This work develops a novel approach for the estimation of life expectancy gradients, using data on the European Union.

It proposes to exploit longevity differences as *multidimensional measure of poverty and inequality*.

Income

Preston (1975), Frijters et al. (2005), Marmot (2015), Chetty et al. (2016), Case and Deaton (2021)

Education

Cutler et al. (2006), Murtin et al. (2017), Galama et al. (2018), Lutz and Kebede (2018)

Health habits

Grossman (1972), McKeown (1976), Cutler et al. (2006), OECD (2018)

Place of residence and social relationships

Kelly et al. (2017), Izenberg et al. (2018), Victor and Pikhartova (2020), Holt-Lunstad (2018) Data are from the European Survey of Income and Living Conditions (EU-SILC).

This include information on European Union countries and UK, from 2003.

EU-SILC collects comparable information on income, poverty, social exclusion and living conditions.

It also contains information on *individual health status*.

Scientific-use files register *causes of exit* from the sample, including death, together with year and month of exit.

- 1. Health gradients
- 2. Life expectancy gradients
- 3. Determinants of dying probability
- 4. Conclusions

Health gradients

Economic status

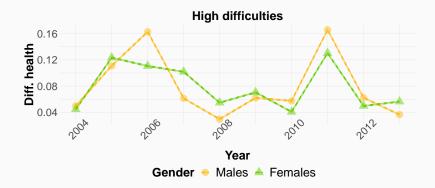


Figure 1: Health differences by economic status.

Notes: Mean health of individuals living in households with none to medium difficulties minus high difficulties to make ends meet. Dotted lines indicate 95% normal confidence interval. *Source: own elaboration of Eurostat EU-SILC PUF.*

Economic status and education

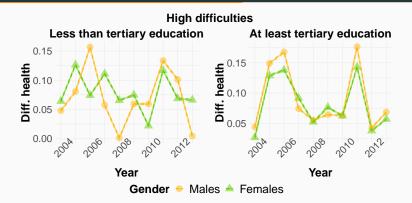
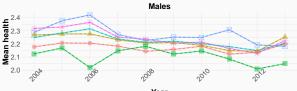



Figure 2: Health differences by economic status and education.

Notes: Mean health of individuals living in households with none to medium difficulties minus high difficulties to make ends meet, conditional on education achievements. Dotted lines indicate 95% normal confidence interval. *Source: own elaboration of Eurostat EU-SILC PUF.*

Detailed economic status

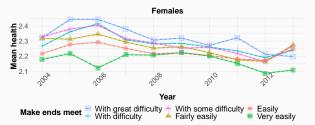


Figure 3: Mean health by five economic status categories.

Notes: Mean health of individuals by economic status of their household. Dotted lines indicate 95% normal confidence interval. *Source: own elaboration of Eurostat EU-SILC PUF.*

Life expectancy gradients

Sample is divided into groups conditional on demographic or socio-economic characteristics.

Within each group p, life expectancy of a cohort of age τ at time t estimated as (Collett, 2015):

$$LE_{p,t}(\tau) = \sum_{j=\tau}^{\tau^m} \prod_{q=1}^{\tau^m-\tau} (1 - \pi_{p,t}(q))$$
(1)

where:

 $\hookrightarrow \pi_{p,t}$ is the estimated dying probability at t for cohort of age τ ; $\hookrightarrow \tau^m$ is maximum reachable age.

Determinants of dying probability

The mortality rate at age τ is estimated through a Cox proportional hazard model (Cox, 1972):

$$\pi(\tau) = \pi_0(\tau) \exp(\mathbf{X}\beta) \tag{2}$$

where:

- $\hookrightarrow \pi_0(\tau)$ indicates the baseline hazard;
- $\hookrightarrow~\textbf{X}$ includes demographic and socioeconomic variables, space and time controls.

Long-term impact of income can be isolated using a permanent income measure.

Potential endogeneity can be further tackled through control function approach.

Construction of inequality indicator

Through regression coefficients, life expectancy (LE) of representative individuals can be estimated.

Consider the following three individuals:

Variable	Individual A	Individual B	Individual C
Income	10,000€/year	15,000€/year	30,000€/year
Education	High-school	High-school	Tertiary
Marital status	Not married	Not married	Married
Gender	Male	Male	Male
Region	Lazio	Lazio	Toscana
Year	2010	2010	2010

LE differences between A and B measure the impact of an yearly income difference of $5,000 \in$.

LE differences between A and C summarise the combined impact of income, education, social relationships and geographical factors.

Conclusions

Poverty and inequality are complex phenomena that impact different dimensions of individual life.

EU-SILC data can be used to provide reliable estimates of individual life expectancy, given their demographic and socioeconomic characteristics.

Life expectancy differences can be used to produce a summarising measure of inequality.

This measure fully considers the multidimensional impact of economic and non-economic distress.

Further, it is easy to interpret and communicate to non-professionals.

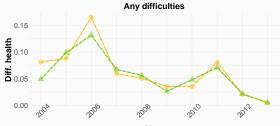
Thank you for the attention!

- Case, A. and A. Deaton (2021). Life expectancy in adulthood is falling for those without a ba degree, but as educational gaps have widened, racial gaps have narrowed. *Proceedings of the National Academy of Sciences 118*(11).
- Chetty, R., M. Stepner, S. Abraham, S. Lin, B. Scuderi, N. Turner, A. Bergeron, and D. Cutler (2016). The association between income and life expectancy in the united states, 2001-2014. *Jama 315*(16), 1750–1766.
- Collett, D. (2015). *Modelling survival data in medical research*. Chapman and Hall/CRC.
- Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34(2), 187–202.

References (cont.)

- Cutler, D., A. Deaton, and A. Lleras-Muney (2006). The determinants of mortality. *Journal of economic perspectives 20*(3), 97–120.
- Frijters, P., J. P. Haisken-DeNew, and M. A. Shields (2005). The causal effect of income on health: Evidence from german reunification. *Journal of health economics* 24(5), 997–1017.
- Galama, T. J., A. Lleras-Muney, and H. van Kippersluis (2018). The effect of education on health and mortality: A review of experimental and quasi-experimental evidence. Technical report, National Bureau of Economic Research.
- Grossman, M. (1972). On the concept of health capital and the demand for health. *Journal of Political economy 80*(2), 223–255.
- Holt-Lunstad, J. (2018). Why social relationships are important for physical health: A systems approach to understanding and modifying risk and protection. *Annual review of psychology 69*, 437–458.

References (cont.)


- Izenberg, J. M., M. S. Mujahid, and I. H. Yen (2018). Health in changing neighborhoods: A study of the relationship between gentrification and self-rated health in the state of california. *Health & place 52*, 188.
- Kelly, M. E., H. Duff, S. Kelly, J. E. M. Power, S. Brennan, B. A. Lawlor, and D. G. Loughrey (2017). The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. *Systematic* reviews 6(1), 1–18.
- Lutz, W. and E. Kebede (2018). Education and health: redrawing the preston curve. *Population and development review* 44(2), 343.
- Marmot, M. (2015). The health gap: the challenge of an unequal world. *The Lancet 386*(10011), 2442–2444.

McKeown, T. (1976). The modern rise of population.

- Murtin, F., J. Mackenbach, D. Jasilionis, and M. M. d'Ercole (2017). Inequalities in longevity by education in oecd countries.
- OECD (July 2018). Regional demography.
- Preston, S. H. (1975). The changing relation between mortality and level of economic development. *Population studies 29*(2), 231–248.
- Victor, C. R. and J. Pikhartova (2020). Lonely places or lonely people? investigating the relationship between loneliness and place of residence. *BMC public health 20*, 1–12.

This slide separates the presentation from backup slides

Economic stauts: alternative measures

Year

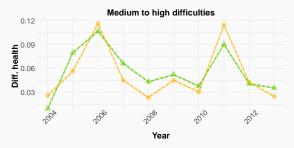


Figure 4: Health differences by economic status.

Economic status and education: alternative measures

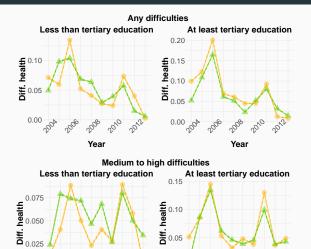


Figure 5: Health differences by economic status and education.

0.00 200 2005

Year

2010

Year

The dying probability $\pi_{p,t}(\tau)$ for the cohort of age τ at time t is estimated as:

$$\pi_{p,t}(\tau) = \frac{m_{p,t}(\tau)}{1 + (1 - a_x) \cdot m_{p,t}(\tau)}$$
(3)

where:

 $\hookrightarrow a_x$ is the portion of year t that dead individuals lived; $\mapsto m_{p,t}(\tau)$ is the specific death rate for class age in year t.

Then, $m_{p,t}(\tau)$ is the ratio of the number of deaths in cohort of age τ at t to the average living population of cohort of age τ between t and t + 1.

End of the presentation.