Recommendations on SAE FH model

1 — Direct survey estimates and synthetic estimates
2 - Composite estimates and shrinkage weights

3 - Ingredients needed to apply F-H model
4 - Model checking
5 - References




Direct survey estimates

‘)

* yi ~ N(Y;.07) (y; 1s weighted estimate for area 1,

not individual survey response; Y; 1s true value)
* If direct esumates’ sampling variances are
unacceptably large, small area modeling may

help.

* Census Bureau cutott: want majority of the CVs
ot key estimates to be < 30%
CV =0y
http:/ /www.census.gov/quality/standards/standardf1 html




Synthetic estimates?

Y; ~ N(X!8,0%)

* Replacing y; with X T3 as your estimate can
improve noisiest estimates, but can also change
your “good” estimates too much:
largest areas should already have small y;, — Y;
and may have comparatively larger X ,T,i'i -Y;




Direct for largest, else synthetic?

Y, = -u,.',-X}-T,;j’ + (1 — w;)y;

* Each w;1s 0 or 1.
w; = 0: use direct estimate, 1ignore regression
w; = 1: use regression, ignore direct estimate




Composite / shrinkage estimates

Y, = w; X ,-T,;)" + (1 — w;)y;

* w; ranges continuously between 0 and 1.
w; near 0: Y; near y;
w; near 1: Y; near x13




Shrinkage weights

~

Y = w X] B+ (1 — w)y;

* w; ranges continuously between 0 and 1.
)
w; near 0: o7 low, trust y; more

w; near 1: (7;-3 high, trust X '3 more
¢« yi~N(Y;,0}) and Y~ N(XTB,0%))
SO
- , ‘) y
UY; ~ ‘\'(XT'i o7 + 0]%])

w, _01/ 0\[




Ingredients needed

~

V: = ; X.T;S’ + (’1 — W; )Y,

w; = 07/ (0] + 73 u )

e We have y;and o ; from the survey
(really an estimate, (3;-"); but we treat it as known);
we have X from auxiliary / administrative data;
we can estimate 5 using WLS regression of
y; ~ N(X ,-T,.fi : 0,“) + oﬁ[)

. ‘)
* Just need a way to estimate 0,




Estimating model variance

Several good estimators; “REML” usually best
“Prasad-Rao” simpler (for illustration only!)
Under model y; ~ N(X ,T B.o ,") +0 '{1)
regression MSE estimates average of rf;-) 4 0-{ r
MSE =~ 'II‘I(-"’('I-I'I(O’;-") + (T'i 1)~ z'n(earn(n;-") ) + (r'{ [

0“{ ;=M SE — mean ((7]'-'))

Adjust for estimation of [ too




Estimating model variance

* Prasad-Rao estimator:
0;"{1 ~ MSE — n"z(::'an('(f,.-“))
63 = MSE=Y o7(1-h;)/(m—p)
* hji1s i”’diagonal element
of hat matrix, X1 ( X1 X)~1X;
m 1s nr of areas; p 1s nr of parameters
* “Iterative’: need OLS to get MSE to plug in
here, then can WLS for actually esumating /3




Standard errors of the estimates

e Standard errors of the new estimates should
- $) ‘) . . -
account for 7;, 0}, and estimation of 3
9 2 Dy 9 2
g1 = wioy = 0305/ (07 + o)
gy = u.';f)V ar(X Ti’)

~

MSE(Y;) = g1+ g2
* More advanced: can also add ¢3, a term to
account for estimation of o7,; see Rao (2003)




Model checking

Shrinkage weights: w; are not all near O or 1°

: ce a9 9
Model variance: 1f 03, too close to 0, o}
may be overestimates

Raking factors: 1s sum of county-level SAE
estimates close to state-level direct estimater

Compare to a “truth deck™ (full census or admin
data): check 1f point estimates and MSE are
good, CI coverage 1s nomunal, etc.




Complications

* Your data are not normal as given, but are
approximately normal on a transformed scale?
(a1, AT vl L2 2
log(y;) ~ N(X; 5,07 +0y/)
Then need to correct for bias when
transfonning estimates back to original scale.

* Your data are not normal at all, but rather
binomual, Poisson, etc.? Hierarchical Bayes
modeling 1s more tlexible (next time!)




Question from last time

Is normality requuired for (non-Bayesian) Fay-
Herriot model? No. This would be enough:
yi=Yi+te Y, = X,Tﬂ + u; |

Ele;) = E(uj) =0, V(e) = (7;-') , Viug) = 0;‘.{[
Without normality, we can estimate BLUP (best
linear unbiased predictor) and get moment-

based variance estimates. With normality, BLUP
1s also BP, and we can use MLE or REML.
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