Small Area Estimation

1 -Small area estimation problem

2 - Estimation for domains - Direct estimators —
estimation for planned domains

3 — Coefficient of Variation and Minimum level of
precision

4- Estimation for unplanned domains and/or
where the sample size is not enough for the
minimum level of precision — Indirect estimators




Recap

Target parameters in the domain:

Total of the study variable
Mean of the study variable
At risk of poverty rate
Poverty gap
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Inference framework

Further we have, depending on the “reference framework” for inference:

— Design Based Approach: Estimator properties are assessed with respect
to the sampling design (see previous example). This framework is used for
small area estimation, mainly because of its simplicity.

— Model Assisted Approach: In practice, the values of Y are typically defined
by assuming a model for the distribution of Y given X. That is, practitioners
have been willing to use models in order to identify optimal strategies for
estimating T,. However, their assessment of these strategies remain design-
based (Sarndal, Swensson and Wretman, 1992).

— Model Based Approach: design-unbiasedness is no longer a requirement,
the alternative property we require of the estimator under this approach is
that it be model-unbiased  g(7,-7,|sx)-0. given the sample S and aux info
X.



What are we modelling?

We are modelling the relationship between an outcome and the auxiliary variables

note that:

- unplanned domains=geographical domains= areas

- notation:

Y, outcome= the value of the study variable (income survey data unit j, individual or
household, in area i)

Ay . . . . . . . . .
()d” outcome= survey direct estimator (per capita income in area i, total income in area i)
I



What are we modelling?

The models are classified into two broad types:

1 Aggregate level (or area-level ) models that relate the small area outcome

(means, totals) to area-specific auxiliary variables. Such models are essential
if unit level data are not available

2 Unit level models that relate the outcome (unit values of the study variable) to
unit-specific auxiliary variables

The use of explicit models offers several advantages




What are we modelling?

Advantages both for are-level and unit-level models:

1 Model diagnostics can be used to find suitable models that fit the data well

2 Area-specic measures of precision can be associated with each small area
estimate, solving the problem of instability seen for synthetic and composite
estimators

Linear mixed models as well as nonlinear models can be used.
Complex data structures, such as spatial dependence and time series structures,
can also be handled

~ W

5 Methodological developments for random effects models can be utilized to
achieve accurate small area inferences
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Unit Level Approach

1 - outcome :y;;, auxiliary variable X available at unit level (j) from a larger data set
Ex: unit=individual, area=province: y;income of unit, X household size

Survey (¥) Larger Data Set (X)
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EBLUP: Unit level approach

@ Yy the vector for the y variable for the population 2

o y =|[yL,y'|', where y_ is the vector of the observed units (the
sampled ones) and y, is the vector of the non observed units (N — n,
r=1,...,N—n)

@ X is the covariates matrix and is considered know for all the
population units

o Subscript i refers to small areas (e.g. y.. is the vector of observed

variables in area i)
/
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EUSILC: ...you observe There are other units in the area i ...but
income of the units in the they are not included in the sample: you
do not observe their income

sample




EBLUP: Unit level approach

@ Model for the y variable (known as superpopulation model)

y=Xp+Zu+e

¢ that can be alternatively write as
Yij =x,j[3+u,-+e,-j

In addition to the assumptions already made, we require that the
model holds for both the population and the sample.

X3 - Zu

Base-line part of the model Differences among areas




EBLUP: Unit level approach

Starting with the linear regression model for grouped individuals:
Ydj = Bod + B1d - Xdj + £4j

for the groups d = 1,..., D and the individuals j, we assume that

Bod = Bo + upg and B1g = P1 + urg4. For the random effects ugg and uy4
we further assume

E(uog) = E(v14) =0 and

V(uod) = 029, V(t14) =02, Cov(uod,t1d) = 0uor-

This yields X3

Zu

V(qu,') =0, -

Moreover, we require independence between £qg4; and both random effects.




EBLUP: Unit level approach

Different models (colours are identifying groups of units:
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EBLUP: Unit level approach

Random intercept model:

» Assume that only the intercept is a random component on the second
level.

» This is the by far most common choice in small area estimation.

» It implies u14 = 0 and hence

Ydj = Xgi3 + ug + £4j

» The covariance of any two units follows as:

02y +0%, ifd=d andj =],
Cov (g, Yarj) = { 050, if d=d"and j # ],

0,, ifd#d andj#/

» Hence, two units from the same group d will be correlated, whereas
units from different groups are independent.



Battese Harter Fuller Model

Battese, G.E., Harter, R.M., and Fuller, W.A. (1988) An error-components

model for prediction of county crops using survey and satellite data.
Journal American Statistical Association 83 28-36.

» This yields

_ydj:X&i,B—i—Ud-*-Edj, d:].,...,D,j:].,...,Nd, (1)

Ud < N(O, Uu)

-'r'gN(O,o

with xgi = (Xgj1,---,Xdjp)’ as a p x 1 column vector of the covariates

for the j-th unit within the d-th area.

» We estimate 3 by GLS, i.e
1 -1

B = Z Z Xdj(Xdj — YdXd)' Z Z(Xd; VdXd)'Ydj

d—ljl =1 j=1




Battese Harter Fuller Model

Under model (1) the small area means are
Pfeffermann (2013))

vl —
pag = XgB + ug + %4

This may be approximated as jg =~ Y:,,G + ug

For small sampling fractions the empirical best linear unbiased

predictor follows as

_.,A

BHF -
g~ = X4+ ug
.y ~ [— — A
Uqg = Yd (yd — de)
n 02
Vd = | 52
G2+ 7=

Upper-case notation refers to population values and lower-case
notation to sample values; a hat indicates that the variable is

estimated and a bar denotes the mean

(cf.

(2)



Battese Harter Fuller Model

ABHF = 5, (Vg + (Xg — %q)'B) + (1 — 74) Xy (3)

» Expressions (2) and (3) are equivalent

» As (3) indicates, the BHF-estimator may be viewed as a composite
estimator of

» the survey regression estimator (multilevel-GREG under SRS)
Ya+ (Xa —X4)'B =

Ou

- - _, = - e
» and the regression-synthetic component X 3 V=

u n4d

with weights 74 and (1 — 7y).

» Unlike the composite estimators in the previous lecture, the weights of
the EBLUP emerge as a simple ratio of the estimated variance
components.



Battese Harter Fuller Model

For finite populations with non-negligible sampling fractions equation (2)

or (3) have to be replaced by:

= LS 35

| JES4 J#54

—~~ ,A —~
Ydi = Xgi3 + Ug

with (4)

(5)

Equation (4) is a general representation of an empirical best predictor
(EBP) as well. The EBP generally comprises two parts

1. The sum of the observations for the sampled units and

2. The sum of the predictions for the non-sampled units.



BHF model: MSE

é’ statistics of interest at area i level ( or group d level):
I say the area mean, area poverty rates , estimated by BHF model

Next step is to derive an MSE estimator

~

o MSE(0;) ~ gii(o) + gi(o) + gzi(o))

o gilo)=alZ, T Z «,
o Mi(o) =
[a/bX,—a!Z, T Z.R. X (X VX)X a,—X.RZ.T.Z.a,]
o g3(0) = tr{(V(e}Z,E,ZLV Y )Vo(V (e} Z,E,ZLV Y VE[(6 -
o)(6 — o)}
o T=X,- X, Z2 (X +Z.X,Z)'Z.X,

o o =(02,05/02)



BHF model: MSE

Finally, the estimator for the MSE of 6; is

Aﬁ(éi) = g1i(0) + gi(6) + 2g3i(F)

@ & is an unbiased estimator for o

Remark: it is possible to obtain an estimate of the MSE using alternative
techniques, such as bootstrap and jackknife



BHF model: recap

» If 72 is small, a small value 54 results as well and more weight will be
given to the regression synthetic component.
The same holds if the area specific sample sizes ny is very small.

» The weighting factor will tend to 1 and more weight will be given to
the survey regression estimators, if the random effects variance is large
The same holds for large sample sizes nq.

» The BHF-estimator is not design-consistent for general survey designs
— Survey regression estimator does not consider design-weights

» The EBLUP is not model unbiased when conditioning on ug, as this
implies assuming fixed intercepts in the different areas (see
Pfeffermann 2013).
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 Examples of application of the BHF EBLUP
estimator during the R lab

Pros and cons of the model will be discussed after examples and
applications to real data



