Small Area Estimation

1 -Small area estimation problem

2 - Estimation for domains - Direct estimators —
estimation for planned domains

3 — Coefficient of Variation and Minimum level of
precision

4- Estimation for unplanned domains and/or
where the sample size is not enough for the
minimum level of precision — Indirect estimators




Recap

Target parameters in the domain:

Total of the study variable
Mean of the study variable
At risk of poverty rate
Poverty gap




Inference framework

Further we have, depending on the “reference framework” for inference:

— Design Based Approach: Estimator properties are assessed with respect
to the sampling design (see previous example). This framework is used for
small area estimation, mainly because of its simplicity.

— Model Assisted Approach: In practice, the values of Y are typically defined
by assuming a model for the distribution of Y given X. That is, practitioners
have been willing to use models in order to identify optimal strategies for
estimating T,. However, their assessment of these strategies remain design-
based (Sarndal, Swensson and Wretman, 1992).

— Model Based Approach: design-unbiasedness is no longer a requirement,
the alternative property we require of the estimator under this approach is
that it be model-unbiased  g(7,-7,|sx)-0. given the sample Sand aux info
X.



What are we modelling?

We are modelling the relationship between an outcome and the auxiliary variables

note that:

- unplanned domains=geographical domains= areas

- hotation:

Y, outcome= the value of the study variable (income survey data unit j, individual or
household, in area i)

A .
()’d" outcome= survey direct estimator (per capita income in area i, total income in area i)



What are we modelling?

The models are classied into two broad types:

1 Aggregate level (or area-level ) models that relate the small area outcome

(means, totals) to area-specific auxiliary variables. Such models are essential
if unit level data are not available

2 Unit level models that relate the outcome (unit values of the study variable) to
unit-specific auxiliary variables

The use of explicit models offers several advantages



What are we modelling?

Advantages both for are-level and unit-level models:

1 Model diagnostics can be used to find suitable models that fit the data well

2 Area-specic measures of precision can be associated with each small area
estimate, solving the problem of instability seen for synthetic and composite
estimators

Linear mixed models as well as nonlinear models can be used.
Complex data structures, such as spatial dependence and time series structures,
can also be handled

W

5 Methodological developments for random effects models can be utilized to
achieve accurate small area inferences
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Area Level Approach

1 - outcome A auxiliary variable X available at unit level (j) synthetized at area level
from a larger "/ ta set
Ex: unit=household, area=province: Po direct estimates at province-level, X

household size at hhs level
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Area Level Approach

2 — outcome y; , only a synthesis of auxiliary variable X is available a larger data set

Ex: unit=household, area=province: y; income available at hhs level in area /, X
population density available at area level

adir
Oi

———— Xy

3 — outcome y;;, Xj;is available ...but you have no access to linkage codes of the
microdata (Fiscal code — privacy issues) in the X data set

Ex: unit=household, area=province: y; income available at hhs level in area i, X
declared income of the hhs



Fay Herriot Model

Framework

o Population €2 divided into m (small) areas
e Availability of sample data on target variable, y

@ m parameter of interest (e.g. mean), ;, i =1,...,m
e From sample — m direct estimates, 5?’", i=1,....m
o and m MSE estimates, mse(§9") =~ 42, i=1,...,m

o Here 9?7 is the MSE(#%") and is often considered known

» In real application we know only its estimates mse(@f"')

@ From other data sources — m p-vector of auxiliary variables, x,




Fay Herriot Model

Fay, R. E. and HerrioT, R. A. (1979). Estimates of income for small places: An
application of James-Stein procedures to census data,

Journal of the American Statistical Association, 74, 269-277.

Assumptions
1 é,d‘r = 9,’ + €
e % N(0,%?)
0 = x] B+ u;
ui 2 N(0, 02)
uy LeVi=1,...,m

s WN

From (1) and (3) follow the Fay-Herriot (FH) model
69" = xI' B + ui + €
/3 is the p-vector of regression parameters

Note: this is a special case of the general linear mixed model with
diagonal covariance structure



Fay Herriot Model

e Under above mentioned assumptions
Enl0"] = En[x[ B+ ui +&] =x] 3
MSEn(97") = Vin(07") = Enl(07" — x] BY?]
= En[(x] B+ u; + & — x] BY?]
= Ep[u? + € + 2u;e] = o2 + ¢F

@ Under Normality of u;s and ;s and under FH model

gdir v N(x;3, 02 + ¥?)



Fay Herriot Model

The Best Linear Unbiased Predictor (BLUP) is obtained minimizing
MSE (67"
o 09" = xT3+ u; + & =xTa+b, 9" is a linear estimator
o En[0%] = xT 3 = En[#;], 69" is an unbiased estimator (under FH
model)
o minzs MSEn(H9T) —

2
~ ~ ag Agr ~ ~
B =B T ) = xR (@)
u i

so #PLVP is the best linear unbiased predictor



Fay Herriot Model

The BLUP can be rewritten as follows

GPHP = 3" + (1= y)x] B

Combination of a direct estimator and a synthetic estimator

0,2

Q i — —H
’Y’ 3+‘r{’i

o

® oy, is unknown
o B=(XTV-1X)-1XTv-19%"
o 12 is assumed known (actually is the estimated MSE of direct

estimate)

o #PYF is a composite estimator



Fay Herriot Model

Using the joint distribution f (()d” u;) under the Normality
assumption we can get the Restricted Maximum Likelihood (REML)
estimates of o, say 7,

o Pluggin in /3 and & into (2) we get the Empirical BLUP (EBLUP)

OFF-P = x| B+ iy = x{ B+ = wz(e"" xIB3)  (3)

e he EBLUP in equation 3 can be rewritten as follows

072 = b + (1= 5] B

&2

° ’Yl - “2+¢,!_
i

T

@ ;s are known as shrinkage factors



MSE under the Fay Herriot Model

The uncertainty of the FH Empirical BLUP has been studied by many researchers
A review of the formulas and approaches is in

RAO, J. N. K. and MOLINA, I. (2015). Small Area Estimation, Wiley, New Yersey, US.

Finally, a correct estimator of the MSE of EBLUP is

mse(9FBLUP) = g1,(82) + £2i(62) + 283:(82

o g1i(62) = Aib? is the leading term of the mse
Zm X'XT -1
o &i(67)=(1—- "}\’i)zxi(ﬂa?jr_d:?'_) X;

—1
.8
° g:i(d;) = <—+‘7>—2[Z"ll (a—fa—]



Fay Herriot Model: out-of-sample areas

@ Population is divided into m small areas
@ A sample is available in m — k areas = in k areas there are not

observation

@ We call the k areas out of sample areas (j =1,...,k)

@ In this case the EBLUP under FH model reduce to a synthetic
estimator

0T —xTB j=1,....k

The synthetic estimator estimation is applicable when auxiliary information X is
available for the k out-of-sample areas ¢



Fay Herriot Model: recap

o Few data requirements

@|In many applications the method can reduce the MSE of direct
estimates

@ Area-level models are used as a standard technique to obtain small
area statistics

o For out of sample areas, where there are no sample observations, the
method provides only model based synthetic estimates instead of

estimates that result from the combination of direct estimates
(collected data) and model based estimates




Fay Herriot Model: recap

Gt =207 + (1= Ai)x] B

Combination of a direct estimator (with sampling weights inside) and a synthetic

estimator, balancing the two via the “shrinkage factor” .
Fi = Y _*_”'wz
Is the FH EBLUP more accurate than the direct estimator? u g

Yes, it is...but

@ The gain in term of variability is not sure
e It depends on
@ The predictive power of the auxiliary variables, X, 3
e The between areas variability, o2
e The variability of direct estimates, /7
e If auxiliary variables are not predictive of the target then the EBLUP
estimator tend to the direct estimator and the reduction in

variability is negligible

if(éf-’fr — X:\I‘—,a) T = 6‘3 t—= 41— mse(é’EBLUP) T

A2
Oy

65 + 97

~

AEBLUPY . ~ 12
Y¥i = mse(H,— = YYj



 Examples of application of the Fay-Herriot
estimator during the R lab

Pros and cons of the model will be discussed after examples and
applicationstoreal data



