Small Area Estimation

1 -Small area estimation problem
2 - Estimation for domains - Direct estimators estimation for planned domains

3 - Coefficient of Variation and Minimum level of precision

4- Estimation for unplanned domains and/or where the sample size is not enough for the minimum level of precision

Recap

- Target parameters in the domain:
- Total of the study variable $t=\sum_{k \in U} y_{k}$
- Mean of the study variable $\bar{y}=\sum_{k \in U} y_{k} / N$
- At risk of poverty rate
- Poverty gap

$$
\begin{aligned}
& P_{0}=\frac{1}{N} \sum_{i \hat{N}^{\prime}}^{N} I\left(y_{i}<z\right) . \\
& P_{1}=\frac{1}{N} \sum_{i=1}^{N} \frac{G_{i}}{z} .
\end{aligned}
$$

More on direct estimators for domains

There are more complex formulations of the direct estimator, other than HT estimator:

- ratio estimator
- regression estimator
- calibration estimator

These estimators are based on the use of auxiliary information, the HT estimator is based only on the y_{i} values of the sampled units

Auxiliary information

Auxiliary: providing supplementary or additional help and support to the estimation process.

- The auxiliary information about the population in the domain may include one or more known variables to which the variable of interest is approximately related.
- The auxiliary information typically is easy to measure, whereas the variable of interest may be expensive to measure.

Examples in case of one aux variable -1

Population units: $1,2, \ldots, N_{d}$
variable of interest : $y_{1}, y_{2}, \ldots, y_{N d}$ (expensive or costly to measure)
auxiliary variable : $x_{1}, x_{2}, \ldots, x_{N d}$ (known)

A national park is partitioned into N_{d} units.

- $y_{i}=$ the number of animals in unit i
- $x_{i}=$ the size of unit i

Examples in case of one aux variable -2

Another example might be where a certain domain (city) has N_{d} bookstores.

- $y_{i}=$ the sales of a given book title at bookstore i
- $x_{i}=$ the size of the bookstore i

A third example would be a region that has N_{d} households.

- $y_{i}=$ the consumption of the household
- $x_{i}=$ the income of the household

Ratio estimator

For sake of simplicity let me indicate the domain population size by N (instead of by N_{d})

If $\tau_{y}=\sum_{i=1}^{N} y_{i}$ and $\tau_{x}=\sum_{i=1}^{N} x_{i}$ then, $\frac{\tau_{y}}{\tau_{x}}=\frac{\mu_{y}}{\mu_{x}}$ and $\tau_{y}=\frac{\mu_{y}}{\mu_{x}} \cdot \tau_{x}$
The ratio estimator, denoted as $\hat{\tau}_{r}$, is $\hat{\tau}_{r}=\frac{\bar{y}}{\bar{x}} \cdot \tau_{x}$

Ratio estimator

The estimator is useful in the following situations:

1 - when X and Y are highly correlated through the origin
$\operatorname{Var}\left(\hat{\tau}_{r}\right)$ is less than $\operatorname{Var}(N \bar{y})$
that is the ratio estimator is more efficient then the HT estimator

High correlation through the origin

Ratio estimator

2 - The case when N is unknow, then it provides a way to estimate the total

$$
\tau_{y}=\sum_{i=1}^{N} y_{i}
$$

Since when N is unknown, one cannot use the HT estimator

$$
N \bar{y} .
$$

HT estimator under sss
$N_{d} \bar{Y}_{d}$ is the HT estinuatar for the domain d infect if S.V.S is used in the donvein

$$
\begin{aligned}
\pi_{i}=\frac{\mu_{d}}{N_{d}} \text { and } \hat{\epsilon} H T & =\sum \varphi_{i} / \pi_{i} \\
& =\sum \varphi_{i} / N_{d}\left(u_{d}\right)^{-i} \\
& =\sum \frac{\varphi_{i}}{M_{d}} \cdot N_{d}= \\
& =N_{d} \cdot \frac{\sum u_{i}}{n_{d}}= \\
& =N_{d} \cdot \bar{Y}_{d}
\end{aligned}
$$

Note that for simpliaty ur used No for Nod.

Properties of the Ratio estimator

- This estimator is not unbiased, but it is unbiased for large samples when the sampling design is a simple random sampling
- The ratio estimator of a mean is

$$
\hat{\mu}_{r}=\frac{\bar{y}}{\bar{x}} \cdot \mu_{x}
$$

Variability of the Ratio estimator

Variance of the $\quad \operatorname{Var}\left(\hat{\mu}_{r}\right) \approx\left(\frac{N-n}{N}\right) \cdot \frac{\sigma_{r}^{2}}{n}$
estimator
where

$$
\sigma_{r}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\frac{\tau_{y}}{\tau_{x}} \cdot x_{i}\right)^{2}
$$

is estimated by $s_{r}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\frac{\bar{y}}{\bar{x}} \cdot x_{i}\right)^{2}$

Confidence Interval for $\hat{\mu}_{r}$

Approximate 100(1-a)\% confidence interval

$$
\hat{\mu}_{r} \pm t_{n-1, \alpha / 2} \sqrt{\hat{\operatorname{Var}}\left(\hat{\mu}_{r}\right)}
$$

where $t_{n-1, a / 2}$ is the percentile read on the t Student distribution table

Confidence Interval for $\hat{\tau}_{r}$

Approximate 100(1-a)\% confidence interval based on t student tables for

$$
\hat{\tau}_{r}=N \hat{\mu}_{r}=\frac{\bar{y}}{\bar{x}} \cdot \tau_{x}
$$

is obtained using

$$
\hat{\operatorname{Var}}\left(\hat{\tau}_{r}\right)=N \cdot(N-n) \frac{s_{r}^{2}}{n}
$$

Ratio estimator r

- In some cases we are interested in estimating

$$
R=\frac{\tau_{y}}{\tau_{x}}\left(\text { also }, \frac{\mu_{y}}{\mu_{x}}\right)
$$

That is for example ratio such as the monthly food budget compared to the monthly income per family

Ratio estimator r

- The sample ratio is the estimate for R

$$
r=\frac{\bar{y}}{\bar{x}}
$$

- where r is the ratio between the sample mean of y and x variables

Variance of r

Variance of the estimator

$$
\operatorname{Var}(r) \approx\left(\frac{N-n}{N \mu_{x}^{2}}\right) \frac{\sigma_{r}^{2}}{n}
$$

Estimated variance of the estimator

$$
\hat{\operatorname{Var}}(r) \approx\left(\frac{N-n}{N \mu_{x}^{2}}\right) \frac{s_{r}^{2}}{n}
$$

Confidence Interval for r

Approximate 100(1-a)\% confidence interval based on t student tables for

$$
r=\frac{\bar{y}}{\bar{x}}
$$

is obtained using

$$
\hat{\operatorname{Var}}(r) \approx\left(\frac{N-n}{N \mu_{x}^{2}}\right) \frac{s_{r}^{2}}{n}
$$

- Examples of application of the ratio estimator during the R lab

