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Block 3: Structural time series models

Introduction

Time series models:

1. Box & Jenkens ARIMA models

2. Structural time series models

Ad. 1:

The approach followed by Box and Jenkins (1989) for modelling time series

starts by making an observed series stationary. Informally spoken, this implies

that the trend in an observed series is removed by taking differences between

subsequent periods. Seasonal patterns are removed in a similar way by taking

differences between the observations of the same quarters or months of two

successive years. Once an observed series is made stationary, it is modelled

with autoregressive and moving average components.

Ad. 2:

Structural time series modelling follows a more direct and intuitive approach

(subjective opinion). An observed series is directly modelled without attempt-

ing to remove non-stationarity through differencing of the observed series. This

is the approach followed by authors like Harvey (1989), and Durbin and Koop-

man (2012).
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Structural Time Series Models

Observed series yt, t = 1, . . . , T.

Structural Time Series (STS) models decompose an

observed series in:

1. Trend (Lt)

2. Seasonal (St)

3. Cycles (γt)

4. Regression component (β
′
txt)

5. White noise (It)

Additive model:

yt = Lt + St + γt + β
′
txt + It, t = 1, . . . , T.

Multiplicative model:

yt = Lt × St × γt × β
′
txt × It, t = 1, . . . , T.

(Additive again after taking logs)
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Local Level Model

Very simple trend model: Lt is a random walk:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + ζt ζt ' N (0, σ2
ζ )

Note:

yt = L0 +

t∑
t=1

ζt + It

• Serial correlation between observations yt. This makes

routine computations from normal regression theory

inefficient

• Filtering and smoothing algorithms developed as an

alternative

• Express STS model as a state space model

• Local level model is already in state space

representation

• Kalman filter to obtain optimal estimates for Lt
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Local Linear Trend Model

Popular trend model for economic time series:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + Rt−1 + ζt ζt ' N (0, σ2
ζ )

Rt = Rt−1 + τt τt ' N (0, σ2
τ )

• Lt often referred to as the level

• Rt interpreted as a slope parameter

• Trend models with random levels are often volatile

Exercise:

• What happens if for the local level model σ2
ζ = 0?

(Illustrate with a graph.)

• What happens if for the local linear model σ2
ζ = 0 and

σ2
τ = 0? (Illustrate with a graph.)
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Smooth Trend Model

Special case of the local linear trend model:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + Rt−1

Rt = Rt−1 + τt ηt ' N (0, σ2
τ )

• Only the slope is random

• Results in more stable trend patterns
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Seasonal components

• Model a cycle with a period of one year

• Models:

– Dummy seasonal model

– Trigonometric seasonal models

More details on modeling seasonal effects in structural

time series models:

• Harvey (1989), Section 4.1: dummy seasonal and trigono-

metric seasonal models

• Durbin and Koopman (2012), Section 3.2: dummy

seasonal and trigonometric seasonal models
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State Space Representation

State space representation STS model:

1. Measurement equation: yt = Zαt + It

• αt: vector with state variables (trend, seasonal,

etc)

• Z: Design matrix measurement equation

• It ' N (0, σ2
I)

2. Transition equation: αt = Tαt−1 + ηt

• T: Design matrix transition equation

• ηt: vector disturbances of the state variables (trend,

seasonal, etc)

• ηt ' N (0,H)

Ad. 1: The measurement equation describes how the observed series depends

on unobserved state variables that describe trend, seasonal components, re-

gression components, etc.

Ad.2: The transition equation describes how the state variables evolve over

time. More precisely; how they change from one period to the next.
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Exercise

Give the state space representation for the local linear

trend model:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + Rt−1 + ζt ζt ' N (0, σ2
ζ )

Rt = Rt−1 + τt τt ' N (0, σ2
τ )
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State space representation local linear trend model

• Measurement equation: yt = Zαt + It

Z = (1 0)

αt = (Lt Rt)
′

⇒ yt = (1 0)

Lt
Rt

 + It

It ' N (0, σ2
I)

• Transition equation: αt = Tαt−1 + ηt

T =

1 1

0 1


ηt = (ζt τt)

′

⇒

Lt
Rt

 =

1 1

0 1


Lt−1

Rt−1

 +

ζt
τt



ηt ' N


0

0

 ,

σ2
ζ 0

0 σ2
τ



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Kalman filter

• Structural time series models in state space form

• Kalman filter to obtain optimal estimates for state

variables (and signal)

• Recursive algorithm that gives optimal estimates for

αt based on the information available at time t

• Kalman filter recursion runs from t = 1, ..., T , and

gives BLUP’s for αt given information obtained until

period t

– at: filtered estimates for αt

– Pt: covariance matrix of at

• Kalman filter recursion:

– Prediction equations:

at|t−1 = Tat−1

Pt|t−1 = TPt−1T
′
+ H

The prediction equations follow directly from the transition equation.
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– From the measurement equation it follows:

ŷt|t−1 = Zat|t−1

– Innovation (new information if yt becomes avail-

able):

νt = yt − ŷt|t−1 = Z(αt − at|t−1) + It

– Variance innovations

ft = ZPt|t−1Z
′
+ σ2

I

– Updating equations (BLUP for αt):

at = at|t−1 +
νt
ft

Pt|t−1Z
′

Pt = Pt|t−1 −
1

ft
Pt|t−1Z

′
ZPt|t−1

The updating equations follow from the assumption that α0, It, and ηt

are multivariate normally distributed and subsequently the conditional

distribution of αt given yt. For a proof see Harvey (1989), Ch. 3.

• To start the filter:

– Initial values for a0 and P0 are known
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– Covariance matrices of the measurement and sys-

tem equation are known, i.e. σ2
I and H
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Smoothing

• at: filtered estimates for αt given information ob-

tained until period t

• Smoothing improves at using information obtained

after period t

• Widely applied smoothing algorithm: fixed interval

smoother

• Recursive algorithm that starts with the final

quantities aT and PT and runs back from

t = T − 1, ..., 1

• Smoothed BLUP’s of αt:

at|T = at + PtT
′
P−1
t+1|t(at+1|T −Tat)

• Covariance matrix of prediction errors of at|T :

Pt|T = Pt + PtT
′
P−1
t+1|t(Pt+1|T −Pt+1|t)P

−1
t+1|tTPt
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Multivariate State Space Models

• Measurement equation: yt = Zαt + it

with yt = (y1,t, ..., yn,t)
′

it ' N (0,G)

G = Diag(σ2
I1
, ..., σ2

In
)

• Transition equation: αt = Tαt−1 + ηt

ηt ' N (0,H)
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Multivariate State Space Models

• Kalman filter recursion:

– Prediction equations:

at|t−1 = Tat−1

Pt|t−1 = TPt−1T
′
+ H

– Updating equations:

at = at|t−1 + Pt|t−1Z
′
F−1
t (yt − ŷt|t−1)

Pt = Pt|t−1 −Pt|t−1Z
′
F−1
t ZPt|t−1

– Covariance matrix innovations:

Ft = ZPt|t−1Z
′
+ G

• Required:

– values for hyperparameters G and H:

Maximum Likelihood

– initial values for a0 and P0:

Diffuse or exact initialization
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Starting values for the Kalman filter: a0 and P0

• Sometimes a-priori information: exact initialization

• If there is no a-priori information; distinguish between

– Non-stationary state variables:

∗ Diffuse initialization

∗ a0 = 0

∗ P0 = κI with κ = 107

– Stationary state variables:

∗ Exact initialization

∗ a0 = 0 (expected value)

∗ P0 derived from its process

• State space model with d non stationary state

variables

• First d observations are used to construct a proper

distribution for the non-stationary state variables
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Model evaluation

Model assumptions:

• Disturbance terms measurement and transition

equations are normally and serially independent

distributed

• ⇒ Innovations or one-step forecast errors are normally

and serially independent distributed

Follows from the prediction error decomposition.

• Model diagnostics are focussed on checking the

assumption that standardized innovations are

standard normal distributed

Standardized innovations:

ν̃t =
νt√
ft

with:

νt = yt − ŷt|t−1

ft = V ar(νt) = ZPt|t−1Z
′
+ σ2

I

Recall that the first d time periods are ignored in the

evaluation of the likelihood function for d diffuse state

variables.
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Normality:

• Bowman-Shenton test on normality

• QQ-plots

• Histogram

• Plot of ν̃t for t = d, . . . , T with 95% confidence

interval

Heteroscedasticity: F-test:

F =

∑h+d
t=d ν̃

2
t∑T

t=T−h−d+1 ν̃
2
t

' F h
h

F-test based on the sum over squared innovations for two exclusive subsets of

the sample of equal length h.

Serial correlation:

• Autocorrelogram based on autocorrelations

• Liung Box test

• Durbin-Watson test

See Durbin and Koopman (2012) Section 2.12 and 7.5 for more details.
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Model selection and comparison

Likelihood-based diagnostics:

• Akaike information criterion

AIC =
1

(T − d)
[−2log(L) + 2(q + p)]

• Bayesian information criterion

BIC =
1

(T − d)
[−2log(L) + log(T − d)(q + p)]

q: number of hyperparameters (estimated with ML)

p: number of state variables

d: number of non-stationary state variables

L: Likelihood

• Nested models: Likelihood ratio test

LR = 2 ∗ [ log(L[Malt])− log(L[Mnull]) ] ' χ2
r

– Malt: extended model under alt. hypothesis

– Mnull: reduced model under the null hypothesis

– r: d.f. ⇒ number of parameters equal to zero
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• Evaluate the contribution of state variables: plots of

the smoothed estimates with 95% confidence interval

See Durbin and Koopman (2012) Section 7.4 for more details.
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Software

Software for STM:

• Eviews

• SAS

• R: package KFAS

• Oxmetrics:

– STAMP

– Ssfpack
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