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Introduction

Purpose of this block:

Combining time series from repeated sample surveys with

time series form big data sources

Motivating example

Statistics Netherlands:

• Consumer confidence survey

• Sentiments index derived from social media platforms

• How to use this additional information?

– Separate statistic

– As an auxiliary series to improve accuracy and

timeliness of the consumer confidence index
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Consumer confidence survey

• Consumer Confidence Index (CCI)

• Monthly cross-sectional survey of 1000 respondents

• Stratified simple random sampling (self weighted)

• Computer assisted telephone interviewing

• CCI:

– 5 questions to measure sentiment of the Dutch

population about the economic climate (economic and

financial situation last 12 months and expectations next 12 months)

– P+
q,t, P

0
q,t, P

−
q,t, q = 1, ..., 5

Yt =
1

5

5∑
q=1

(P+
q,t − P−q,t)

– Questions: economic and financial situation last

12 months and expectations next 12 months
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Figure 1: Consumer Confidence Index
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Sentiment Index

Sentiment Index Social Media (SMI):

• Derived from Facebook and Twitter (Daas and Puts,

2014)

• Messages are classified as positive or negative

• SMI is the difference between the fraction of positive

and negative messages

• High frequency, very timely, no response burden, cost

effective
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Figure 2: SMI (top) versus CCI (bottom)5
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Univariate STM CCI

• Measurement error model: Yt = θt + et

– Yt: sample estimate CCI

– θt: population value CCI

– et: sample error

• STM for population value: θt = Lt + St + εt

– Lt: Smooth trend model

– St: Trigonometric seasonal component

– εt: population white noise

• STM observed series:

Yt = Lt + St + εt + et ≡ Lt + St + νt

– νt ' N (0, σ2
ν)

– Cov(νt, νt′) = 0
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• Final model CCI:

Yt = Lt + St + βδ11
t + νt

δt models a level shift in 2011(9): economic downturn

νt ' N (0, σ2
ν)

In case of heteroscedastic sampling errors:

• Time dependent variance structure: νt ' N (0, V ar(νt))

– V ar(νt) = V ar(Yt)σ
2
ν Cov(νt, νt′) = 0

– V ar(Yt): sample variance of Yt
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Univariate STM SMI

• Final model SMI series 2010-2015:

Xt = Lt + εt

– εt ' N (0, σ2
ε )

– Cov(εt, εt′) = 0

• Lt: Smooth trend model

• Weak non-significant seasonal pattern

• No level shift required for 2011(9)
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Bivariate time series model CCI and SMI

•

Yt

Xt

 =

LYt
LXt

 +

St
−

 +

β11δ11
t

−

 +

νYt
εXt


• Trend:

LYt = LYt−1 + RY
t−1, LXt = LXt−1 + RX

t−1,

RY
t = RY

t−1 + ηYt , RX
t = RX

t−1 + ηXt ,ηYt
ηXt

 ' N (0,Σ)

Σ =

 σ2
ηY

ρησηY σηX

ρησηY σηX σ2
ηX

 =

1 0

a 1


d1 0

0 d2


1 a

0 1


If d2 → 0 then ρη → 1, and

ηXt = aηYt , RX
t = aRY

t +R̄, LXt = aLYt +L̄+tR̄,
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Strong correlation:

• More precise estimates for LYt and thus Yt

• d2 → 0: cointegration

• Trends of both series are driven by one common trend

• Harvey and Chung (2000)

Alternative model :

Yt = Lt + St + βδ11
t + γXt + νt

Drawback:

• γXt absorbs a main part of the trend and the seasonal

effect

• Lt residual trend
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• Structural time series models expressed as state-space

models

• Kalman filter to fit the model

• Maximum likelihood for hyperparameters

• Software: OxMetrics with SsfPack (Doornik, 2009;

Koopman et al., 2008)
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Results

Results hyperparameters

Maximum likelihood estimates hyperparameters

Hyperparameter Bivariate Univariate

SD slope disturbances trend CCI 1.25 1.18

SD slope disturbances trend SMI 0.25 -

Correlation slope disturbances CCI,SMI 0.92 -

SD seasonal disturbances CCI 7.5E-6 0.0025

SD disturbances measurement eq. CCI 2.68 2.46

SD disturbances measurement eq. SMI 0.84 -

Average SE direct estimates CCI 1.21
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Results

Cross plots slope disturbances CCI (x axis) versus SMI (y axis)

Left: ρη = 0 (log likelihood: -234)

Middle: ρη = 0.92 (log likelihood: -230)

Right: ρη = 1.0 (log likelihood: -242)

p-value LR test on H0 : ρ = 0: 0.0047
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Results

Comparison signal estimates CCI (smoothed estimates)
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Results

Comparison standard errors of signal estimates CCI
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Results

Comparison estimates month-to-month change CCI
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Results

Comparison standard errors month-to-month change CCI
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Nowcasting

• Sample surveys are less timely compared to big data

sources

• More precise early estimates in real time when SMI is

available, but CCI not yet

• Compare:

– One-step-ahead forecast univeriate model CCI

– Estimation with the bivariate model where for the

last month CCI is missing

– Benchmark: smoothed estimates univariate model
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Results nowcasting

Comparison nowcasts bivariate and univariate model CCI
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Results nowcasting

Comparison standard errors nowcasts bivariate and uni-

variate model CCI
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Discussion

• Official statistics

– Repeated surveys

– Time series models appropriate form of SAE

• Bivariate structural time series model

– Combine series from repeated surveys with

auxiliary series

– Assess similarities between CCI and SMI

– Improve precision of CCI estimates

– Form of nowcasting to improve timeliness sample

surveys

• Useful approach to borrow strength from auxiliary

series and improve timeliness of survey samples

• Details: van den Brakel et al. (2017)
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