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Introduction

Strong points probability samples

• Valid inference of large target populations based on

relative small samples.

Probability sampling offers a clear frame work to

construct optimal sampling strategy, i.e.

(design + estimator)

• Uncertainty quantified via variance estimation

• Designed data:

– Precision of results controlled via sample design

(strategy)

– Concepts and constructs to measure target

variables of interest via questionnaire design

• Low risk level

– Design-based inference robust for model

misspecification
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– NSI controls availability, stability, and consistency

of the data source

Weak points probability samples

• Large variances under small sample sizes

• Costly

• Not timely

• Selective non response

• Measurement bias

• Response burden (business surveys)
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Strong points non-probability data

• Large amount of records

• Cost effective

• High frequency (in real time)

• Detailed level

• Direct measurement of behaviour instead of asking
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Weak points non-probability data

• Selection bias / DGP unknown

• Unknown to which extend results can be generalized

to an intended target population

• Unstructured

• Often suboptimal construct for the intended target

variables

• No/poor auxiliary variables

• High risk level

– No design-phase to control accuracy

– Model-based inference procedures to combine

non-probability data with survey data or to correct

for selection bias

– No control over availability, stability, and

consistency of the data source

4



Block 6: Big data as primary data source

Growing interest in using alternative data sources or big

data. Many examples at CBDS:

• Many examples at CBDS:

– Social media studies; Sentiment index

– Propensity to move from registers

– Web scraping / text mining from websites

(innovative companies and sustainable companies)

– Scanner data for price indices

– Hay fever indicator based on scanner data

– Mobile phone data for day time populations

– Measuring increase of urbanization with satellite

data

– Measuring solar power panels with aerial images

– Estimating solar power production indirect

• Problem: no clear frame work, apparently each

application requires a different approach
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Outline:

• Review of literature to correct for selection bias in

nonprobability samples

• Some examples in more detail:

– Estimating unmetered photovoltaic power

– Two examples of satellite images and aerial images

– Measuring road intensity with road sensors

– Day time population with mobile phone data
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Inference for nonprobability samples

Most methods often (but not always) use a reference

sample that is based on a probability sample

• Machine learning algorithms to analyze the relation

between images and survey or census data

– Remotely sensed night-time light (via satellite

images) as a proxy for poverty (Noor et al., 2008)

– Day time satellite images to predict well-being

(Engstrom et al., 2017)

– Mobile phone data to predict poverty

(Blumenstock et al., 2015)

• Weighting and calibration

– Similar to weighting in sample surveys (Särndal

et al., 1992)

– Strong assumption MAR conditional on the

covariates
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• Quasi-randomization

– Explicit model for estimating inclusion

probabilities for the units in the nonprobability

sample

– Same covariates in the probability and

nonprobability sample

– Elliott and Valliant (2017); Valliant et al. (2013);

Valliant and Dever (2011), based on propensity

scores (Rosenbaum and Rubin, 1983, 1984)

– Strong assumption MAR conditional on the

covariates

• Superpopulation model approach

– No reference sample

– Explicit model for the observations in the sample

yi = f (xi)

– Predictions for the units not included in the

sample ŷi
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– Prediction population total t̂y =
∑

i∈s yi+
∑

i∈(U\s) ỹi

– Valliant et al. (2000), based on strong assumption

MAR conditional on the covariates

• Inverse sampling

– Available:

∗ Selective big data sample (B) containing target

variable yi and auxiliary variable xi

∗ Representative probability sample (A) contain-

ing auxiliary variable xi

– A is used to assess the selectivity of B

– Calculate importance weights for all units in B

– Draw a sample from B with unequal selection

probabilities proportional to the important weight

– → Simple random sample

– Reference: Kim and Wang (2018)
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• Data integration

– Available:

∗ Selective big data sample (B) containing target

variable yi and auxiliary variable xi

∗ Representative probability sample (A) contain-

ing auxiliary variable xi

– Imputation of yi in A from B using xi via nearest

neighbour (Rivers, 2007)

– Construct weights for all units in B based on a

parametric model and apply unequal probability

weighting (Kim and Wang, 2018)

Issues with these methods:

• Methods assume structured data (identify units of the

target population in the big data source)

• Methods assume availability of auxiliary information

in the big data source
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Estimating unmetered photovoltaic power

consumption

• Energy accounting requires coherent statistics on

energy related issues

• Statistics on renewable energy for evaluating the agenda

on energy transition and on climate policy

• Production of electricity by domestic photovoltaic

installations

– currently unknown

– incomplete register of PV installations and

assumptions about their average capacity

• Purpose of this project: approximate the amount of

unmetered photovoltaic electricity indirectly
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Estimating unmetered photovoltaic power

consumption

Approach

• If PV installations produce a lot of electricity, less

electricity will be taken from the high voltage grid

• Available data:

– Time series data on electricity exchange on the

high power grid

– Meteorological time series data on solar irradiance

• Hidden signal on the amount of solar power produced

by domestic PV installations
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Data

Data

• Time series on electricity exchange from the high power

voltage grid:

– MWh at a daily frequency

– January 1st 2004 through December 31th 2017

– Downloaded from the website of the Dutch

Transmission System Operator (Tennet)

• Meteorological time series data

– Solar irradiance in J/cm2 at a daily level

– Temperature (in 0.1oC) at a daily level

– Day length

– January 1st 2004 through December 31th 2017

– Downloaded from the website of the Royal

Netherlands Meteorological Institute for the same

period.
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Data

Time series

grid power use solar irradiance

temperature daylight hours
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Figure 1: Available time series for 2016 on a daily frequency.
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Model

Model

• Production of solar power (Pt):

– Irradiance (It)

– Temperature (Tt)

– Day length (Lt)

– Calendar effects (Ct)

• Problem: Electricity demand (Yt) also depend on It, Tt, Lt, Ct
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Model

Figure 2: Directed acyclic graph (DAG) for the solar power causal model,

with I�t solar irradiance, P�t solar power, Y grid power, D total demand, T

temperature, L length of day and C calender effects.

Two causal paths between It and Yt,

It → Pt → Yt (1)

It → Dt → Yt (2)
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Model

Problem: how to isolate the effect of It on Pt:

• Causal modelling (Pearl, 1995)

• Assume independence between Pt and Dt

• Estimate the effect of It on demand Dt

– ARIMAX model for period 2004 - 2010

(Box et al., 2015)

– Yt = f (It, Tt, Lt, Ct)

– βI : effect of It on demand
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Model

Problem: how to isolate the effect of It on Pt (cont.):

• Estimate the effect of It on PV production Pt

– ARIMAX model for period 20013 - 2017

– Correct Yt for the effect of It on demand:

Ỹt = Yt − βIIt

– Ỹt = f (It, Tt, Lt, Ct)

– β̃I,y: effect of It on Ỹt (year dependent)

• Estimate the daily production of solar power:

P̂t = β̃I,yIt

• Annual estimates: aggregating the daily estimates P̂t
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Results

ARIMAX(p,d,q) model:

• Modelselection based on AIC

• d=1

• AR lags p=6

• MA lages q = 1

• Selected covariates and their interactions: Buelens and

van den Brakel (2018)
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Results

Results of the ARIMAX model fit

Year β̃I,y SE P̂t (MWh) D̂ (MWh) Percentage solar

2013 -0.390 0.787 140,877 101,554,484 0.14%

2014 -1.296 0.797 485,381 99,549,220 0.49%

2015 -2.004 0.755 774,212 100,436,422 0.77%

2016 -3.409 0.828 1,275,643 102,065,655 1.25%

2017 -5.086 0.807 1,867,628 103,223,204 1.81%

• β̃I,y shows a clear increase in solar power production

• Demand (D̂): grid power+solar power

20



Block 6: Big data as primary data source

Results

Estimated solar power
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Figure 3: Estimated solar power for the years 2013—2017 in MWh.
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Results

Model evaluation

• Standardized residuals

• Comparison with CBS publications on solar power

production
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Results

Table 1: Diagnostic checks on standardized residuals of the ARIMAX fit data

set A and B.

Diagnostic Data set A Data set B

Skewness -2.17 -1.88

Kurtosis 22.94 19.32

p-value Bowman-Shenton test on normality 0.00 0.00

p-value Box-Ljung test on autocorrelation 0.01 0.00

p-value F-test on heteroscedasticity 0.53 0.39

Figure 4: Standardized residuals of the ARIMAX model with a 95% confidence

interval applied to data set A (left panel) and data set B (right panel).
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Figure 5: Histogram of the standardized residuals of the ARIMAX model with

the empirical distribution and the standard normal distribution for data set A

(left panel) and data set B (right panel).

Figure 6: Correlogram of the residuals of the ARIMAX model with a 95%

confidence interval for data set A (left panel) and data set B (right panel).
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Results
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Figure 7: Comparison of our model results (solid line) with official statistics

published by CBS on total solar energy consumption (dotted line) and the

amount consumed by households (dashed line).

• Solid line ARIMAX estimate

• Dashed line: total solar power estimate (CBS)

includes metered solar power by solar power farms

• Dotted line: solar power household PV installations
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(CBS)

Based on incomplete register of domestic PV installations and assumptions

about the power production of the installations.

• Divergence in 2016 and 2017 might be explained by

small unmetered PV installations of companies which

do not appear in the register
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Conclusions

• Statistical information on the use of renewable energy

relevant for SDG indicators and energy transition

• Method to estimate unmetered solar power using data

found on the internet

• Results do not disagree with CBS publications

• Improvements

– Time series models (STM?)

– More realistic modelling of interactions between

temperature and production of solar power

– Multivariate approach for regional estimates

– Account for increase of unmetered wind energy
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