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Introduction

Introduction:

• Block 4: Bivariate STM

• Combine time series observed with a repeated survey

with an auxiliary series.

– Improve survey estimates

– Estimation in real time or nowcasting

• But what if there are n auxiliary series?

• Results in a high dimensionality problem (deteriorated

prediction power of a model)

• Dynamic Factor Models (Doz et al., 2011)

• Illustrating example: nowcasting unemployed labour

force with Google trends
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Labour Force Survey

• Monthly, quarterly and annual figures labour force

• Rotating panel design

• Monthly samples observed 5 times at quarterly

intervals

• Problems:

– Sample size to small for monthly figures with GREG

estimator

– Rotation Group Bias

– Discontinuities due to a major survey redesign

• Solution: 5 dimensional structural time series model
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Figure 1: Comparison of estimates.

Illustration Rotation Group Bias
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• Each month: 5 independent samples

• Gives 5 direct estimates ŷ
[j]
t , j = 1, . . . , 5 for

population parameter (e.g. unemployed labour force).

• Monthly figures: 5-dimensional state space model

(Pfeffermann, 1991):
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• Used by Statistics Netherlands since 2010 to produce

official monthly figures about the labour force for:

– National level

– Breakdown in six domains (gender*age)

– Employed, unemployed, and total labour force
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Figure illustrates official monthly unemployed labour force

figures:

• General regression estimates monthly unemployed labour

force at the national level: ŷ
[j]
t , j = 1, ..., 5, in grey

• Filtered trend (level before redesign in 2010) in blue

• Details: van den Brakel and Krieg (2009, 2015)
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More timely unemployment figures

Labour Force Survey

• Figures month t published in t + 1

• How to improve:

– accuracy

– timeliness

• Potential auxiliary information for unemployment

– Claimant counts (register): for month t available

in t + 1

– Google trends: weekly or daily frequency.

• Google trends potentially useful to estimate

unemployment in real time
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Auxiliary series unemployment

Figure illustrates:

• Black: general regression estimates monthly

unemployed labour force per wave at the national level:

ŷ
[j]
t , j = 1, ..., 5.

• Green: Claimant counts

• Red: Google trend for the search term

”job description”

• In this application about 80 Google trends
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Auxiliary series unemployment

Issues

• High dimensionality problem:

– Cannot include 80 series with separate trends,

seasonals etc

– Large models with many parameters result in

reduced prediction power

• Mixed frequency series: observations become available

at different moments in time resulting in time series

with ”jagged” ends (observations are partially missing

at the end of the series)

• Solution: dynamic factor model with a two-step

estimator proposed by:

– Giannone et al. (2008)

– Doz et al. (2011)
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Dynamic factor model

Step 1

• Estimate the common factors in the Google trends

x
[GT ]
t = Λft + εt V ar(εt) = Ψ

ft = ft−1 + µt

– x
[GT ]
t : n vector with auxiliary series / Google trends

assumed to be I(1) (weekly frequency)

– ft: r vector with common factors r << n assumed

to be I(1)

– Λ: n× r matrix with factor loadings

– εt: n vector with idiosyncratic components /

variable specific shocks

– Ψ: diagonal variance matrix of εt

– for identifiability reasons: E(µtµ
′
t) = I[r]

• ft, Λ, Ψ are estimated with Principal Component

Analysis applied to the weekly data of GT
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Dynamic factor model

• Google trends are aggregated to monthly frequence

• Usual approach: time series model for LFS and CC at

a weekly frequency

• Akward for the LFS due to the complexity of the

model component for the sampling error

• In this case:

x
q,[GT ]
t =

1

q

q−1∑
q=0

x
[GT ]
t , t = q, 2q, 3q, etc.
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Dynamic factor model

Step 2

• State space model for the entire data set
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• Λ̂, Ψ̂ obtained in step 1 are kept fixed

• ft are re-estimated with the Kalman filter
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Dynamic factor model

• Strong correlations between trend disturbance terms

η
[y]
t , η

[CC]
t and µt improves accuracy trend LFS L

[y]
t

• Examples where claimant count series are used to

improve accuracy of monthly unemployment figures

based on Labour Force Survey data:

– Harvey and Chung (2000) UK LFS

– van den Brakel and Krieg (2016) Dutch LFS

• Google trends are added to estimate L
[y]
t in real time
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Results

Models:

1. Baseline model: model used in production using the

LFS component only:
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Results

• Resluts based on the period January 2004 until

December 2017 (168 months)

• Out-of-sample nowcasts based on the last 56 months:

– nowcast for t: LFS and CC missing, only GT

available

– Hyperparameter estimates based available

information in t

• Estimation accuracy:

M̂SE(ât|t) =
1

(T − d)

T∑
t=d+1

Pt|t

• Nowcast accuracy:

M̂SFE(ât|t−1) =
1

h

T∑
t=T−h+1

Pt|t−1
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Results

• Number of common factors for Google trends: 2

• Correlations trend disturbance terms:

Model ρ̂1,GT (p-value) ρ̂2,GT (p-value) ρ̂CC (p-value)

CC 0.90 (0.0004)

GT 0.43 (0.39) -0.40 (0.31)

GT+CC -0.04 (1.0) 0.05 (1.0) 0.90 (0.0007)

p-value: LR test H0 : ρx = 0
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Results

Results trend L
[y]
t relative to baseline model

model

CC GT CC+GT

M̂SE(L
[y]
t ) 0.869 0.967 0.869

M̂SFE(L
[y]
t ) 0.715

M̂SFE(L
[y]
t ) 0.988 0.709

week 1 0.989 0.707

week 2 0.987 0.712

week 3 0.989 0.709

week 4 0.989 0.713

week 5 0.977 0.691
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Results

Results signal θ
[y]
t = L

[y]
t + S

[y]
t relative to baseline model

model

CC GT CC+GT

M̂SE(θ
[y]
t ) 0.890 0.977 0.889

M̂SFE(θ
[y]
t ) 0.729

M̂SFE(θ
[y]
t ) 0.953 0.743

week 1 0.953 0.749

week 2 0.953 0.735

week 3 0.955 0.744

week 4 0.956 0.756

week 5 0.943 0.717
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Results

Nowcast trend L
[y]
t
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Nowcast signal θ
[y]
t = L

[y]
t + S

[y]
t
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Results

Model diagnostics:

• Test on standardized innovations of LFS

Software:

• R
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Conclusions

• Dynamic factor model to include large sets of auxiliary

series in parsimonious model (avoids high

dimensionality problems)

• Strongest contribution in this application comes from

claimant counts

• Effect of the selected Google trends is minor

• Details: Schiavoni et al. (2019)
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Extension

Model for mixed frequencies

• Time series repeated survey quarterly basis

• Auxiliary series on a monthly frequency

• Temporal disaggregation

• Define time series model for the survey at the highest

frequency

• Stock variables: quarterly observation is the mean

over three months

• Flow variables: quarterly observation is the total over

three months
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Extension

Bivariate model:

• ykt sample survey observed if t = 3k, k = 1, 2, . . . and

missing otherwise

• xt auxiliary series observed for t = 1, 2, 3, . . .

• Model for both series defined on a high frequency

Lzt + S
[z]
t + I

[z]
t , z ∈ x, y

• L[z]
t for example a smooth trend

• Model the correlation between the slope disturbance

terms η
[y]
t and η

[x]
t (see Block 3)

• Measurement equation xt:

xt = Lxt + S
[x]
t + I

[x]
t ,

• Measurement equation ykt (flow variable):

ykt =

2∑
j=0

(Lyt−j + S
[y]
t−j + I

[y]
t−j),
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• Measurement equation ykt (stock variable):

ykt =
1

3

2∑
j=0

(Lyt−j + S
[y]
t−j + I

[y]
t−j),

• Seasonal component quarterly series: only the first

two frequencies can be estimated (Harvey, 1989)

S
[y]
t =

2∑
j=1

γyjt

• Can be applied in a similar way to a dynamic factor

model

• Efficient approach for nowcasting: Kalman filter pro-

duces predictions for the missing values
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Extension

State space representation:

• Measurement equation: yt = Zαt + It

with yt = (ykt , xt)
′

• Transition equation: αt = Tαt−1 + ηt

• αt =

αy
t

αx
t


– αy

t = (Lyt , R
y
t , L

y
t−1, L

y
t−2, S

y
t , S

y
t−1, S

y
t−2)t

– Syt = (γy1 t, γ̃
y
1 t, γ

y
2 t)

– Syt−1 = (γy1 t−1, γ
y
2 t−1)

– Syt−2 = (γy1 t−2, γ
y
2 t−2)

– αx
t = (Lxt , R

x
t , γ

x
1 t, γ̃

x
1 t, . . . γ

x
6 t)

t

• Z =

zy

zx


– zy = (1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

– zx = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)
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• T = BlockDiag(Ty,Tx)

– Ty =



Ty
L 0[4×4] 0[4×2] 0[4×2]

0[4×4] Ty
S 0[4×2] 0[4×2]

0[2×4] Ty
S−1 I[2] 0[2×2]

0[2×4] 0[2×4] 0[2×2] 0[2×2]
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1 1 0 0

0 1 0 0

1 0 0 0

0 0 1 0


– Ty

S = BlockDiag(C1,C2) (See Block 2)

– Ty
S−1 =

1 0 0 0

0 0 1 0


– Tx

S = BlockDiag(Tx
L,T

x
S) (See Block 2)

• ηt =

ηyt

ηxt


– ηyt = (0, ηyRt

, 0, 0, ωy1,t, ω
∗y
1,t, ω

y
2,t, ω

∗y
2,t, 0, 0, 0, 0)t

– αx
t = (0, ηxRt

, ωx1,t, ω
∗x
1,t, . . . ω

x
6,t)
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