
R Laboratory

Introduction to R

Francesco Schirripa

francesco.schirripa@ec.unipi.it

September 26, 2019

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 1 / 38

What is R?

“R is a free software environment for statistical computing and
graphics” (https://www.r-project.org/about.html).

R is based on the computer language S, which was developed by John
Chambers and others at Bell Laboratories in 1976.

R was initially designed in 1992 by Ross Ihaka and Robert Gentleman
at the Department of Statistics of the University of Auckland in
Auckland, New Zealand. However, many individuals has contributed
to R by sending code and bug reports.

It is open source and available at https://www.r-project.org/.

It is multiplatform (Windows, Linux, MacOsX).

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 2 / 38

https://www.r-project.org/about.html
https://www.r-project.org/

Why R?

R is open source

- Open source means that you do not have to pay for it...but it is much
more: it provides full access to algorithms and their implementation; it
gives you the ability to fix bugs and extend software; it promotes
reproducible research . . .

“Created by statisticians for statisticians”.

R is Flexible and powerful. R can handle complex and large data.

R is Well Supported. R has a huge, active and constantly evolving
users-based community (community-supported).

R has amazing graphical capabilities.

. . .

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 3 / 38

How does R work?

Once R is started, a console is displayed where commands can be written
(at the prompt >).

> 3+5

[1] 8

> 3*5

[1] 15

> 5/5

[1] 1

> 6-2

[1] 4

However, it is a good practice to store all commands in a text (script) file
with extension .R.

Two windows:

- Script (new or existing)
- Terminal – output and temporary input (unsaved)

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 4 / 38

R Studio

RStudio (http://www.rstudio.com): integrated development
environment for R. It includes in just one screen:

1. Text editor with syntax highlighting, brackets matching (very useful)
and buttons/keyboard combinations to submit code snippets to the
console directly (i.e., no need for copy-and-paste)

2. Console (output);

3. Workspace browser, a data viewer and the commands history;

4. Windows for graphics/packages/online help

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 5 / 38

http://www.rstudio.com

References on R

Official manuals on https://cran.r-project.org/

Courses on Data Camp (https://www.datacamp.com/)

Use R! series published by Springer, in which you can find specialized
texts on variety of topics. On the Springer website (https:
//www.springer.com/series/6991?detailsPage=titles) you
can find a list of the titles in this series. Some of these texts area
available in the library (https://www.sba.unipi.it/)

The funny guide The R Inferno, by Patrick Burns, available here:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

The web is full of resources on R: blogs, websites, forums . . . (such as
https://stackoverflow.com/)

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 6 / 38

https://cran.r-project.org/
https://www.datacamp.com/
https://www.springer.com/series/6991?detailsPage=titles
https://www.springer.com/series/6991?detailsPage=titles
https://www.sba.unipi.it/
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://stackoverflow.com/

Getting help

The online help is a very useful tool to familiarise with R and its
commands:

1. help.start() opens the html main page of R online help;

2. help(cmd1) (or ?cmd1) provides details about how command cmd1
works; if you are interested in the help for operators you have to put
it between apostrophes help(‘%?%’)

3. help.search("keyword") (or ??keyword) performs an online
search based on keyword;

4. apropos("keyword") returns all the commands containing keyword
in its name.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 7 / 38

Getting help: R code

> help.start ()

> help(sqrt)

> ?sqrt

> help.search("linear models")

> ?? linearmodels

> apropos("mean")

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 8 / 38

The working directory: organize your work

Once you open R you are inside the memory of the computer.
The part of the memory in which you are currently working is called
working directory.
You can find out which is the current working directory by running
the getwd() - get working directory - function.

dir() displays all the files in the directory;

setwd("new path"): change the current working directory.
In RStudio you can set the working directory using the menu.

There is no general rule on how to organize your working directories
but may be convenient create a single directory for each project (for
instance named “ProjectName”) and create some sub-directories for
data, script, documents . . .

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 9 / 38

R objects

R is an object-oriented program: every operation is made on and
produces objects. All objects in R have a class, reported by the function
class(). Possible class are: numeric, logical, character, list,

matrix, array, factor and data.frame.
Assignment is performed by the <- or the = operator.

> x<-5

> x

[1] 5

> class(x)

[1] "numeric"

During an R session, objects are created and stored by name.
The R command ls() can be used to display the names of the objects
which are currently stored within R.
The collection of objects currently stored is called the workspace.
rm(list=ls()) cleans the whole workspace;

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 10 / 38

R commands and case sensitivity

R is case sensitive:

⇒ A and a are different symbols and would refer to different variables.

Commands are separated either by a semi-colon (‘;’), or by a newline

Comments can be put almost anywhere, starting with a hashmark (‘#’),
everything to the end of the line is a comment.

If a command is not complete at the end of a line, R will give the symbol
‘+’.

This is a comment not a line -command

> a<-2

> A

Error: object ’A’ not found # error message

I can write two commands on the same line

> A<-4; A

[1] 4

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 11 / 38

Rules for assignment

Names defining objects cannot contain spaces or mathematical
operators/special characters (except for the dot .), nor can they begin with
a number; Some peculiar values:

NA (Not Available) is the code denoting a missing numerical or
character element (warning: ”NA” is a valid character string);

NaN (Not a Number) is the result of impossible or undefined
expressions like a division by zero;

Inf and -Inf denote ±∞
These and other R keywords (for,while,if,TRUE,FALSE etc.) are
not available for assignment.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 12 / 38

Vectors

A vector is a sequence of data elements of the same basic type. To
define a vector we use the function c();

length(): returns the length of a vector;

str(): returns the internal structure of the vector (or of an R object
in general);

x=seq(from=a,to=b,by=s): returns a vector with elements from a

to b with step s;

x=rep(x,times=a): repeats x a times (x can be a vector);

Specific elements can be selected using square brackets: x[a];

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 13 / 38

Vectors (cont.)

> x<-c(2, 3, 5)

> #vector containing three numeric values 2, 3 and 5

> x

[1] 2 3 5

> str(x)

num [1:3] 2 3 5

> length(x)

[1] 3

> x[2] #select a specific element

[1] 3

> # A vector can contain character strings.

> b=c("aa", "bb")

> class(b)

[1] "character"

> #A vector of 10 elements from 1 to 10

> x<-seq(1,10,1)

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 14 / 38

Vectors (cont.)

Basic mathematical functions can also be applied to vectors. Such
functions are performed element-by-element, i.e. elementwise

> # Define two vectors

> a = c(1, 3, 5, 7)

> b = c(1, 2, 4, 8)

> #if we multiply a by 5, we would get a vector with

> # each of its members multiplied by 5.

> 5 * a

[1] 5 15 25 35

> # if we add a and b together , the sum would be a

> # vector whose members are the sum of the

> # corresponding members from ’a’ and ’b’.

> a + b

[1] 2 5 9 15

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 15 / 38

Vectors (cont.)

In other cases - like for basic statistical summary measures - the whole
vector is the input of the function

> s1 <- c (6, 1, 5, 9, 4, 7, 8, 2, 5, 8)

> mean(s1) #mean

[1] 5.5

> median(s1) # median

[1] 5.5

> range(s1) # range (min and max)

[1] 1 9

> var(s1) # variance

[1] 6.944444

> sd(s1) #standard deviation

[1] 2.635231

> summary(s1) #provide summary stats about s1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 4.25 5.50 5.50 7.75 9.00

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 16 / 38

Logical values & operators

Some operators return the logical values TRUE and FALSE:

1 <: less than; <=: less or equal than;
2 >: greater than; >=: greater or equal than;
3 ==: equal to; !=: different from;
4 is.element(): set membership indicator;
5 is.na() indicates the elements of the vectors that represent missing

data

Logical operators:

1 &: logical intersection (AND);
2 |: logical union (OR);
3 !: logical negation

which() returns the indices of elements satisfying a logical condition.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 17 / 38

Logical values & operators: R code

> a<-c(6,2,5,3,8,2)

> b<-c(1,4,3,6,7,2)

> a<b

[1] FALSE TRUE FALSE TRUE FALSE FALSE

> a<=b

[1] FALSE TRUE FALSE TRUE FALSE TRUE

> a!=b # means "different than"

[1] TRUE TRUE TRUE TRUE TRUE FALSE

> is.element(2,a)

[1] TRUE

> is.element(9,a)

[1] FALSE

> > which (a<5)

[1] 2 4 6

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 18 / 38

Missing values

In R, missing values are represented by the symbol ’NA’ (not available)

> a<-c(6,2,5,3,8,2)

> is.na(a)

> # returns TRUE if an element of a is missing

[1] FALSE FALSE FALSE FALSE FALSE FALSE

> a[3]=NA

> #assign a missing value at the third element of a

> is.na(a)

[1] FALSE FALSE TRUE FALSE FALSE FALSE

May be useful recode a particular values as NA, missing values are
represented by the symbol ’NA’ (not available)

> # Re-coding the occurrence of a particular value

> x = c(3.14, 98, 0, 99, 7, NA , 0, 99)

> x[x==99] = NA # Re-code all 99 in x as NA

> # Re-coding the occurrence of NA

> x[is.na(x)] = -1 # Recode all NA in x as -1.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 19 / 38

Factors & lists

Factors:

1 are objects encoding categorical variables;
2 are often used to group other (usually quantitative) variables;
3 are defined by the command factor();
4 have a reference level which can be changed;

Lists:

1 are set of objects with different nature/dimension;
2 are defined by the command list();
3 are useful to summarise an analysis or as output of complex functions.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 20 / 38

Factors & lists: R code

> #define a numerical vector status

> status <-c(rep(0,5), rep(1,8), rep (2,3))

> status_factor <-factor(status , labels = c("divorced",

+ "married", "single"))

> table(status_factor)# gives the frequency table

status_factor

divorced married single

5 8 3

> n = c(2, 3, 5); s = c("aa", "bb", "cc", "dd", "ee")

> b = c(TRUE , FALSE , TRUE , FALSE , FALSE)

> mylist = list(n, s, b, 3)

> str(mylist)

List of 4

$: num [1:3] 2 3 5

$: chr [1:5] "aa" "bb" "cc" "dd" ...

$: logi [1:5] TRUE FALSE TRUE FALSE FALSE

$: num 3

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 21 / 38

Matrices & Arrays

A matrix is a collection of data elements arranged in a
two-dimensional rectangular layout:
matrix(data,nrow,ncol,byrow = FALSE) defines a nrow×ncol
matrix; by default matrix is filled by columns (we can fill the matrix
by row using the argument byrow = TRUE)

Arrays are the R data objects which can store data in more than two
dimensions:
array(data,dim=c(n1,...,np)) defines a p-dimensional array;

elementwise operations like for vectors can be performed;

Most common linear algebra operators readily available:

1. %*%: matrix product (conformable matrix dimensions needed);
2. det(): matrix determinant;
2. t(): matrix/vector transposition;
2. solve(): solution of a linear system (can be used to invert matrices);
2. diag(): extracts the diagonal of a matrix or builds a diagonal matrix.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 22 / 38

Define a matrix and indexing: R code

> A = matrix(c(1, 2, 3, 8, 8, 7), nrow=2, ncol =3)

> A # print the matrix

[,1] [,2] [,3]

[1,] 1 3 8

[2,] 2 8 7

> #INDEXING

> A[2, 3] # element at 2nd row , 3rd column

[1] 7

> A[2,] # the 2nd row

[1] 2 8 7

> A[,3] # the 3rd column

[1] 8 7

> A[,c(1 ,3)] # the 1st and 3rd columns

[,1] [,2]

[1,] 1 8

[2,] 2 7

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 23 / 38

Define a matrix and indexing: R code

> A = matrix(c(1, 2, 3, 8, 8, 7), nrow=2, ncol =3)

> A # print the matrix

[,1] [,2] [,3]

[1,] 1 3 8

[2,] 2 8 7

> #INDEXING

> A[2, 3] # element at 2nd row , 3rd column

[1] 7

> A[2,] # the 2nd row

[1] 2 8 7

> A[,3] # the 3rd column

[1] 8 7

> A[,c(1 ,3)] # the 1st and 3rd columns

[,1] [,2]

[1,] 1 8

[2,] 2 7

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 24 / 38

Combine R Objects by Rows or Columns

Another way of creating a matrix is by using functions cbind() and
rbind() as in column bind and row bind.
cbind() and rbind() take a sequence of vector, matrix or data frames
arguments and combine by columns or rows, respectively

> cbind(c(1,2,3),c(4,5,6))

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> rbind(c(1,2,3),c(4,5,6))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 25 / 38

Dataframes

Data frame is a two dimensional data structure in R. It is a special
case of a list which has each component of equal length.

Data frame is of particular importance in data analysis. It represents
the matrix of data where each row is an observation and each
column is a variable (the variables may be of different type)
Dataframes are defined by command:
data.frame(data,nrow,ncol);

Variable X of dataframe df is obtained by df$X;

data(): returns the list of all R datasets;

names(df) or colnames(df): returns the names of the columns of
df;

attach(df): allows to refer to variables in df without using df$X;

detach(df): stops the effect of attach(df).

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 26 / 38

Dataframes: R code

> height = c(200, 165, 150)

> patent= factor(c(1,1,2), labels=c("no", "yes"))

> gender = c("male", "female", "female")

> # DEFINE THE DATAFRAME

> df = data.frame(height , patent , gender)

> # ADDING COLUMNS AND ROWS TO A DATAFRAME

> df2 <- data.frame(birth_place=c("Pisa",

+ "Florence", "Pisa"))

> df_tot <-cbind(df,df2)

> df_tot

height patent gender birth_place

1 200 no male Pisa

2 165 no female Florence

3 150 yes female Pisa

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 27 / 38

Dataframes: R code (cont.)

> # Add a row to my dataframe using rbind()

> # Note: Column names and the number of columns

> # of the two dataframes needs to be same.

> df3 <-data.frame(height = c(180, 182, 170),

+ patent= factor(c(2,1,2),

+ labels=c("no", "yes")),

+ gender = c("female", "female",

+ "female"),

+ birth_place=c("Pisa","Pisa",

+ "Florence"))

>

> df_tot2 <-rbind(df_tot ,df3)

> head(df_tot2 ,3)

height patent gender birth_place

1 200 no male Pisa

2 165 no female Florence

3 150 yes female Pisa

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 28 / 38

Dataframes: R code (cont.)

> mean(iris$Petal.Length)

[1] 3.758

> attach(iris)

> mean(Petal.Length)

[1] 3.758

> # ordering dataframe by a given variable

> iris_new <-iris[order(iris$Petal.Length),]

> #selecting a subset of observations

> new_iris=subset(iris ,

+ Petal.Length >quantile(Petal.Length ,

+ probs =0.25))

> #MERGE 2 DATAFRAMES

> df1 <-data.frame(ID.1=1:10 , y=21:30)

> df2 <-data.frame(ID.2=1:10 , z=61:70)

> df.merge <-merge(df1 , df2 , by.x="ID.1", by.y="ID.2")

> # by.x and by.y specifications of the columns used

> # for merging

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 29 / 38

Importing and exporting data

The main commands to read external data are:

1. read.table() for .txt files;
2. read.csv() and read.csv2() for .csv files;

Most common argument of these functions are (be careful because
the default values of some of these argument in the two functions are
different!)

1. file: name with extension (and eventually pattern) of the data
file;

2. header: whether the first row contains the column names;
3. sep: the column separator (space, comma, tabulation, semi-colon);
4. dec: the decimal separator (dot or comma).

Data can be exported with the commands: write.table(),
write.csv(), write.csv2()

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 30 / 38

Importing and exporting data: R code

> #SET WD

> #setwd ("your WD")

> # load .txt file

> mydata <- read.table("occupation.txt", header=TRUE ,

+ sep="" , dec=".")

> # if I do not specify the working directory I have

> # to specify the path of the data

> # load .csv file

> mycsv <-read.csv("example1.csv", sep=";" ,dec=",",

+ header=TRUE)

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 31 / 38

R packages (1)

All R functions and datasets are stored in packages (also called
libraries). Only when a package is loaded are its contents available.

A package is a collection of previously programmed functions

Packages not included in the default R release must be downloaded
from the CRAN with install.packages(pkg1). R and RStudio
have user-friendly interface to load/install packages.

When a package is installed on your pc you have to load it in the
current R session with or library(pkg1) (or require(pkg1)): in
this way all the functions and datasets in the package are available for
usage.

library() lists the available packages in the current R session.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 32 / 38

R packages (2)

Information on a package and its functions can be gathered by
help(package=pkg1) or by ??pkg1.

On the webpage of a package you can find the Reference manual in
PDF format which may provide additional useful information.

Moreover, many packages have vignettes. A vignette is a long-form
guide to the package. It is like a book chapter or an academic paper:
it describe the problem that the package is designed to solve, and
then show the reader how to solve it.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 33 / 38

Basic programming with R: Loops in R

Loops are used in programming to repeat a specific block of code.

On the whole, we can divide loops in two categories
1 loops executed for a given number of times, as controlled by a counter

or an index, incremented at each iteration cycle. These are part of the
for loop family.

2 loops based on the verification of a logical condition. The condition is
tested at the start or the end of the loop construct. These variants
belong to the while or repeat family of loops, respectively.

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 34 / 38

For loops

for loops can be used to loop through the values of an object. The
command is of the form

for (<index > in <vector >) {

<statements >

}

The expressions between curly brackets are executed separately for each
value in the vector

> x = c(1,5,7,10)

> for (i in (1: length(x)))

+ {

+ x[i]=x[i] + i

+ }

> x

[1] 2 7 10 14

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 35 / 38

Apply-family functions

For loops are very slow. You can improve code readability over more
efficient solutions such as the *apply functions
There are several related functions in R which allow you to apply a
function to a series of objects (vectors, matrices, dataframes or lists).
They include: apply, lapply, sapply, tapply, aggregate.
For example I want to compute the mean of each column of a matrix

> x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

> apply(x, 2, mean)

x1 x2

3 3

I want the mean of Petal Length by Species (iris dataset).

> tapply(iris$Petal.Length ,iris$Species ,mean)

setosa versicolor virginica

1.462 4.260 5.552

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 36 / 38

The if else statement

Sometimes, you want to execute a function only if a certain condition is
met. In this case, the if structure can be used, and complemented by the
else control.

if(boolean_expression) {

statement(s) will execute if the boolean exp is true.

} else {

statement(s) will execute if the boolean exp is false.

}

Alternatively you can use the ifelse() function:

ifelse(boolean_expression ,

value if condition is true ,

value if condition is false)

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 37 / 38

The if else statement (cont.)

> x = c(4:1, 2:5)

> for (i in 1: length(x))

+ {

+ if (x[i]>2)

+ {

+ print("x is larger than 2")

+ } else

+ {

+ print("x is less than or equal 2")

+ }

+ }

[1] "x is larger than 2"

[1] "x is larger than 2"

[1] "x is less than or equal 2"

[1] "x is less than or equal 2"

[1]

Francesco Schirripa R Laboratory - Introduction to R September 26, 2019 38 / 38

