
Recap on small area estimation

Monica Pratesi - based on April 2016 short course by S. Marchetti

University of Pisa, Italy

19 June 2017
Jean Monnet Chair SAMPIEU - a.y. 2018/2019



Outline

1 Introduction to Small Area Estimation

2 Direct Estimators

3 Synthetic Estimators

4 Composite Estimators



Part I

Introduction to Small Area Estimation



Introduction to SAE

Introduction to Small Area Estimation

Problem: demand from official and private institutions of statistical
data referred to a given population of interest

Possible solutions:

Census
Sample survey

Sample surveys have been recognized as cost-effectiveness means of
obtaining information on wide-ranging topics of interest at frequent
interval over time
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Introduction to SAE

Introduction to Small Area Estimation

Population of interest (or target population): population for which
the survey is designed

Domain: sub-population of the population of interest, they could be
planned or not in the survey design

Geographic areas (e.g. Regions, Districts, Ward, Villages)
Socio-demographic groups (e.g. Gender, Age, Religion)
Other sub-populations (e.g. the set of firms belonging to a industry
subdivision)

→we don’t know the reliability of estimates of the domains/area
that have not been planned in the survey design
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Introduction to SAE

Introduction to Small Area Estimation

Often estimates based only on sample data are not reliable for some
areas/domains of interest

In these cases we have two choices:

oversampling over that areas
applying statistical techniques that allow for reliable estimates in
that areas/domains

Small Domain or Small Area

Geographical area or domain where direct estimators do not reach a
minimum level of precision
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Introduction to SAE

Introduction to Small Area Estimation: Example

US Survey sample sizes with an equal probability of selection
method, sample of 10,000 persons

Table : Sample and population size by State (US 1994)

State 1994 Population (thousands) Sample size
California 31,431 1207

Texas 18,378 706
New York 18,169 698

...
...

...
DC 570 22

Wyoming 476 18

Customer satisfaction for a government service:
California 24.86% → 95% C.I. [22.4%, 27.3%] and CV=0.05 →
reliable
Wyoming 33.33% → 95% C.I. [11.5%, 55.1%] and CV=0.33 →
unreliable
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Introduction to SAE

Introduction to Small Area Estimation: Example

Target population: farmers in Tanzania Mainland

Variable of interest: Production of maize in 2015

Survey sample: Annual Agricultural Sample Survey (AASS),
designed to obtain reliable estimate at Regional level in Tanzania
Mainland

planned design domains: Regions
unplanned design domains: e.g. Districts, Wards, Villages

Planned sample size of AASS in Morogoro: e.g. 500 farmers

Kilombero district 28 farmers → need SAE
Kilosa district 7 farmers → need SAE
. . .
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Part II

Direct Estimators



Direct Estimators

Definitions

Direct estimator: an estimator based only on area specific sample
data

Design-based estimation: the main focus is on the design
unbiasedness. Estimators are unbiased with respect to the
randomization that generates survey data

Finite population Ω = 1, . . . ,N

y : variable of interest, with yi value of the i-th unit of the population

Statistics of interest: e.g. total, Y =
∑

Ω yi or mean, Ȳ = Y /N

Sample s = 1, . . . , n

p(s): probability of selecting the sample s from population Ω. p(s)
depends on know design variables such as stratum indicator and size
measures of clusters
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Direct Estimators

Definitions

Consider an estimator θ̂ of θ

Design bias: Bias(θ̂) = Ep[θ̂]− θ
Design variance: V (θ̂) = Ep[(θ̂ − θ)2]

Design Mean Squared Error: V (θ̂) + B(θ̂)2

Design-based properties

1 Design-unbiasedness: Ep[θ̂] =
∑

p(s)θ̂s = θ

2 Design-consistency: θ̂ → θ in probability
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Direct Estimators

Estimation of Means: Direct Estimation

Sample data {yi}, i ∈ s

Direct estimator for the mean θ:

θ̂dir =

∑
i∈s wiyi∑
i∈s wi

wi = π−1
i , the basic design weight

πi is the probability of selecting the unit i in sample s

Remark: weights wi are independent from yi
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Direct Estimators

Small Area Estimation

Let partitioning population Ω into m areas:

Ω = ∪mi=1Ωi

Ωi = 1, . . . ,Ni , population of the domain i

si = 1, . . . , ni , sample of the domain i

Statistics of interest for the variable y :

θi =
1

Ni

∑
j∈Ωi

yj
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Direct Estimators

Small Area Estimation: Direct Estimator

Sample data {yij}, j ∈ si , i = 1, . . . ,m

Direct estimator of the mean for area i :

θ̂diri =

∑
j∈si wijyij∑
j∈si wij

wij = π−1
ij is the weight for unit j in area i

πij is the inclusion probability of unit j in area i

The case of the simple random sampling within area i (SRS):

πij = πi =
(1

1)(Ni−1
ni−1)

(Ni
ni

)
= ni

Ni
→ wij = π−1

i = Ni
ni

θ̂i =
∑ni

j=1 wij yij∑ni
j=1 wij

=

∑ni
j=1

Ni
ni

yij∑ni
j=1

Ni
ni

=
Ni
ni

∑ni
j=1 yij

ni
Ni
ni

= 1
ni

∑ni
j=1 yij (that is the

sample mean)
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Direct Estimators

Small Area Estimation: Direct Estimator

θ̂diri is design unbiased

Sampling variance:

v(θ̂diri ) =
(∑ni

j=1(w2
ij − wij)(yij − ȳi )

2
)
/
(∑ni

j=1 wij

)2

SRS: v(θ̂diri ) = (1− ni
Ni

)
S2
i
ni

, S2
i =

∑
j∈si

(yij−ȳi )
2

ni

The magnitude of the variance depends on: wij , S
2
i and ni

If ni is small the design variance is likely to be large

Remark: In such a situation, estimation of variance is even more
problematic
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Direct Estimators

Direct estimation, example

Synthetic population of 1.6mln farms generated using Tanzania
Agricultural Census 2007/08

Target variable: production of maize

Sample: stratified simple random sample

Strata: 99 districts

Distribution of sample and population sizes of the 99 districts

Min. 1st Qu. Median Mean 3rd Qu. Max.
ni 3 24 50 38.5 50 50
Ni 29 485 6048 16320.0 25970 105000
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Direct Estimators

Direct estimation, example

Direct estimates of maize production (kg) at district level

District ni Estimate SD CV%
1 Arusha 1 50 692.6 135.2 19.5
2 Arusha 3 50 625.3 104.3 16.7
3 Arusha 4 50 653.5 105.5 16.1
4 Arusha 5 28 699.6 187.6 26.8
5 Arusha 6 50 613.5 111.2 18.1
6 Arusha 7 50 587.2 96.9 16.5
. . .
98 Tanga 8 50 721.2 123.0 17.1
99 Urban West 1 50 275.6 41.9 15.2
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Direct Estimators

Direct estimation, example

As the sample size decrease, the CV increase

Min. 1st Qu. Median Mean 3rd Qu. Max.
CV% 15.1 16.6 17.9 24.1 24.0 66.0

U.S Census Bureau want majority of the CVs of key estimates to be
< 30%
(www.census.gov/quality/standards/standardf1.html)

In this example 21% of estimates have a CV > 30%

Often, National Statistical Institute consider a very good estimates
those estimates with a CV ≤ 16%

In this example only 7% of estimates have a CV 6 16%
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Part III

Synthetic Estimators



Synthetic

Synthetic Estimators

Synthetic assumption: small areas have same characteristic as the
large area (e.g. maize production for different districts is the same
as that for Tanzania)

Advantages of synthetic estimator:

Simple and intuitive
Applies to general sampling designs
Borrow strength from similar
Provides estimates for areas with no sample from the sample survey
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Synthetic

Synthetic Estimation with no auxiliary variable (dummy
estimator)

Implicit model assumed:

yj = α + εj , j ∈ Ω

Synthetic estimator for the mean:

θ̂syni = θ̂dir =

∑
j∈s wjyj∑
j∈s wj

Ep[θ̂syni − θi ] ≈ θ− θi , the bias relative to the parameter θi is small if
θi ≈ θ
This synthetic estimator is very efficient if the small area mean is
approximately equal to the overall mean

It can be heavily biased for areas exhibiting strong individual effects
which can lead to large MSE
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Synthetic

Synthetic Estimation with auxiliary variables

Area-specific auxiliary information available, Xi

Implicit model assumed:

yij = xTij β + εij , j ∈ Ωi

Synthetic estimator:

θ̂syni = X̄
T
i β̂

β̂ = (
∑

j∈s wjxjxTj /cj)
−1(
∑

j∈s wjxjyj/cj)
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Synthetic

Synthetic Estimation with auxiliary variables

Ep[θ̂syni − θi ] ≈ X̄
T
i β − θi , expected bias

β = (
∑

j∈Ω xjx′j/cj)
−1(
∑

j∈Ω xjyj/cj)

The relative bias is small if both of the following conditions are
satisfied

i. βi = β, where
βi = (

∑
j∈Ωi

xijxTij /cij)
−1(
∑

j∈Ωi
xijyij/cij)

ii. θi = X̄
T
i βi

The synthetic estimator will be very efficient when the small area i
does not exhibit strong individual effect with respect to the
regression coefficient

If cj = νTxj , then θ̂syni add up to GREG estimator (i.e.

θ̂GREG = X̄
T
β̂)
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Synthetic

Synthetic Estimation, MSE

MSE of synthetic estimator

MSE (θ̂syni ) = Ep[(θ̂syni −θi )]2 = Ep[(θ̂syni −θ̂
dir
i )2]−Vp(θ̂syni −θ̂

dir
i )+Vp(θ̂syni )

Estimator of the MSE

mse(θ̂syni ) = (θ̂syni − θ̂
dir
i )2 − v(θ̂syni − θ̂

dir
i ) + v(θ̂syni )

mse(θ̂syni ) is approximately unbiased, but very unstable and can take
negative values

An alternative is mse(θ̂syni ) ≈ (θ̂syni − θ̂diri )2 − v(θ̂diri )

Many other alternatives exist in literature

Monica Pratesi - based on April 2016 short course by S. Marchetti Recap on small area estimation



Synthetic

Synthetic estimator, example

Synthetic population of 1.6mln farms generated using Tanzania
Agricultural Census 2007/08

Target variable: production of maize

Sample: stratified simple random sample

Strata: 99 districts

Distribution of sample and population sizes of the 99 districts

Min. 1st Qu. Median Mean 3rd Qu. Max.
ni 3 24 50 38.5 50 50
Ni 29 485 6048.0 16320.0 25970 105000
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Synthetic

Synthetic estimator, example

Estimate the average production of maize in 99 districts in Tanzania
Mainland

Sample data available for each districts with sample size ni

yij : production of maize (kg) of farm j in district i (sample data)

x1,ij and x2,ij are the agricultural surface and cost of farm j in
district i (sample data)

The district average of agricultural surface (X̄1,i ) and cost (X̄2,i ) is
considered known, i = 1, . . . , 99 (Census data)

Assumption of linear relation between target and predictors

yij = β̂0 + β̂1x1,ij + β̂2x2,ij + εij , (1)

εij
i.i.d.∼ (0, σ2

ε)
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Synthetic

Synthetic estimator, example

From (1) estimate β0, β1 and β2 with OLS

The synthetic estimator of the average production of maize for
district i is

θ̂syni = β̂0 + β̂1X̄1,i + β̂2X̄2,i

Note: it is not necessary to know x1,ij and x2,ij for all the farms in
the district i

Remark: (1/99)
∑99

i=1 θ̂
syn
i <,=, > θ̂dir

A simple solution is a ratio adjustment

θ̂syn−a
i =

θ̂syni∑99
i=1 θ̂

syn
i

Monica Pratesi - based on April 2016 short course by S. Marchetti Recap on small area estimation



Synthetic

Synthetic estimator, example

Synthetic estimates of maize production (kg) at district level

District ni Estimate SD CV%
1 Arusha 1 50 672.0 20.6 3.1
2 Arusha 3 50 682.5 57.3 8.4
3 Arusha 4 50 652.5 1.0 0.2
4 Arusha 5 28 670.6 29.1 4.3
5 Arusha 6 50 658.0 44.4 6.8
6 Arusha 7 50 660.6 73.4 11.1
. . .
98 Tanga 8 50 770.6 49.4 6.4
99 Urban West 1 50 282.2 6.6 2.3
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Synthetic

Synthetic estimator, example

Min. 1st Qu. Median Mean 3rd Qu. Max.
CV%, dir 15.1 16.6 17.9 24.1 24.0 66.0
CV%, syn 0.2 4.3 7.9 12.4 16.1 95.1

9% of synthetic estimates have a CV > 30%

75% of synthetic estimates have a CV 6 16%
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Composite Estimators



Composite

Composite Estimators

A composite estimator is an estimator that combine direct and synthetic
estimator:

θ̂comi = φi θ̂
dir
i + (1− φi )θ̂syni

where

θ̂diri is a direct estimator for the i-th small area

θ̂syni is a synthetic estimator for the i-th small area

φi is a suitably chosen weight, 0 ≤ φi ≤ 1

The aim of the composite estimator is to balance the potential bias of the
synthetic estimator against the instability of the design-based estimator
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Composite

The Choice of φi

Sample size dependent estimate

φi =

{
1 if (N/n)ni ≥ δNi

(N/n)ni/(δNi ) otherwise

where δ is subjectively chosen (δ ∈ [2/3, 3/2] in most practical situation)

Consider a SRS of size n from a population of N units and δ = 1

If ni ≥ (Ni/N)n then the composite estimator reduces to direct
estimator

If ni < (Ni/N)n then the composite estimator assign a weight of
(N/n)(ni/N), that is an increasing function of the sample rate
within the area
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Composite

The Choice of φi

Optimal φi

a. Minimize the MSE (θ̂comi ) with respect to φi assuming

COV (θ̂diri , θ̂syni ) ≈ 0

the optimal solution is given by

φ∗
i =

MSE(θ̂syni )

MSE(θ̂syni ) + V (θ̂diri )

the parameter φi can be estimated by

φ̂∗
i =

mse(θ̂syni )

(θ̂syni − θ̂diri )2

Note: φ̂∗i is very unstable
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Composite

The Choice of φi (James-Stein method)

b. Minimize m−1
∑m

i=1 MSE (θ̂comi ) with respect to a common weight
φi = φ ∀ i = 1, . . . ,m

the optimal solution is given by

φ∗ =

∑m
i=1 MSE(θ̂syni )∑m

i=1(MSE(θ̂syni ) + V (θ̂diri ))

the parameter φ can be estimated by

φ̂∗ = 1−
∑m

i=1 v̂(θ̂diri )∑m
i=1(θ̂syni − θ̂diri )2

The use of a common weight may not be reasonable if the individual
variances vary considerably.

Monica Pratesi - based on April 2016 short course by S. Marchetti Recap on small area estimation



Composite

MSE of composite estimator

Suppose small area means θi are the parameter of interest

Let Ti = g(θi ) be a specified transformation of θi such that

T̂i = g(θ̂idir)
ind∼ N(Ti , ψ

2
i )

ψi is considered known

Assume that a prior guess of Ti , say T 0
i is available ∀ i = 1, . . . ,m

T 0
i can be a least square predictor or T 0

i = m−1
∑m

i=1 T̂i = T̂.

Let δi = Ti/ψi and δ̂i = T̂i/ψi so that δ̂i
ind∼ N(δi , 1)

Let δ0
i = T 0

i /ψi be the guess of δi

The transformed composite estimator is than

T̂ com
i = T 0

i +

(
1− m − 2

S

)
(T̂i − T 0

i ) , m ≥ 3

S =
∑m

i=1(T̂i − T 0
i )2/ψ2

i
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Composite

MSE of composite estimator

Write T̂ com
i as

T̂ com
i = T̂i +

m − 2

S
(T 0

i − T̂i )

So if T 0
i is fixed we have

MSE (T̂ com
i ) = Ep[T̂i +

m − 2

S
(T 0

i − T̂i )− Ti ]
2

= Ep

[
ψ2
i − 2ψ2

i

m − 2

S

(
1− 2(T̂i − T 0

i )2

ψ2
i S

)
+

(m − 2)2

S2
(T 0

i − T̂i )
2

]
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Composite

MSE of composite estimator

An unbiased estimator of MSE (T̂ com
i ) is

mse(T̂ com
i ) = ψ2

i +2ψ2
i

m − 2

S

(
1−2(T̂i − T 0

i )2

ψ2
i S

)
+

(m − 2)2

S2
(T 0

i −T̂i )
2

mse(T̂ com
i ) can take negative value, so a better estimator is

mse+(T̂ com
i ) = max(0,mse(T̂ com

i ))

The CV derived from mse(T̂ com
i ) can be quite large, that is, it can

be very unstable

Model-based small area estimators overcome this problem. However, they
can be biased in the design-based framework
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Composite

Recap Composite estimation

The estimator T̂ com
i is a composite estimtor

T̂ com
i = φ̂T̂i + (1− φ̂)T 0

i

φ̂ = 1− m−2
S

The more common transform g(·) are the following

g(θi ) = arcsin θi
g(θi ) = θi
g(θi ) = ln θi
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Composite

Comparison Between Direct, Synthetic and Composite
Estimator

Empirical comparison of small area estimation methods for the Italian
Labor Force Survey (LFS)

Performance of small area estimators are studied by simulating
sample from 1981 Population Census. Samples are drown following
the LFS design (two stages with stratification)

400 sample replicates, each of identical size of the LFS sample

14 Health Service Areas (HSA) of the Friuli Region are considered to
be small areas
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Composite

Comparison Between Direct, Synthetic and Composite
Estimator

Index used to evaluate the performances of the estimators

Absolute Relative Bias

ARB =
1

14

14∑
i=1

1

400

400∑
h=1

∣∣∣∣ θ̂(h)
i − θi
θi

100

∣∣∣∣
Relative Root MSE

RRMSE =
1

14

14∑
i=1


√

1
400

∑400
h=1(θ̂

(h)
i − θi )2

θi
100
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Composite

Comparison Between Direct, Synthetic and Composite
Estimator

ARB and RRMSE for Direct, Synthetic and Composite estimators

Table : Estimators performances

Estimator ARB RRMSE
Direct 2.39 31.08

Synthetic 8.97 23.80
Composite 6.00 23.57

Note: the RRMSE of Direct estimator is approximatively 30% higher
than Synthetic and Composite estimator
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Model-based estimators



Model-based estimators

Model-based estimators

Synthetic and composite estimators are based on implicit models
that provide a link to related small areas through supplementary data

Small area model-based estimators explicit small area models that
make specific allowance for between area variation

In this framework models involve random area-specific effects that
account for between area variation beyond that explained by
auxiliary variables included in the model

The success of any model-based method depends on the availability
of good auxiliary data

Subject matter specialists or end users should have influence on the
choice of models, particularly on the choice of auxiliary variables
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Model-based estimators

Model-based estimators

The use of explicit models offers several advantages:

1 Model diagnostics can be used to find suitable models that fit the
data well

2 Area-specific measures of precision can be associated with each
small area estimate, solving the problem of instability seen for
synthetic and composite estimators

3 Linear mixed models as well as nonlinear models can be entertained.
Complex data structures, such as spatial dependence and time series
structures, can also be handled

4 Methodological developments for random effects models can be
utilized to achieve accurate small area inferences
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Model-based estimators

Model-based estimators

The models may be classified into two broad types:

1 Aggregate level (or area-level) models that relate the small area
means to area-specific auxiliary variables. Such models are essential
if unit level data are not available

2 Unit level models that relate the unit values of the study variable to
unit-specific auxiliary variables

In this technical workshop we will focus on area-level models
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Model-based estimators

Area-level model-based estimators

Framework

Population Ω divided into m (small) areas

Availability of sample data on target variable, y

m parameter of interest (e.g. mean), θi , i = 1, . . . ,m

From sample → m direct estimates, θ̂diri , i = 1, . . . ,m

and m MSE estimates, mse(θ̂diri ) ≈ ψ2
i , i = 1, . . . ,m

Here ψ2
i is the MSE(θ̂diri ) and is often considered known

In real application we know only its estimates mse(θ̂diri )

From other data sources → m p-vector of auxiliary variables, xi ∀
i = 1, . . . ,m
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Model-based estimators

The Fay-Herriot Model

Assumptions

1 θ̂diri = θi + ei

2 ei
iid∼ N(0, ψ2

i )

3 θi = xTi β + ui

4 ui
iid∼ N(0, σ2

u)

5 ui ⊥ ei ∀ i = 1, . . . ,m

From (1) and (3) follow the Fay-Herriot (FH) model

θ̂diri = xTi β + ui + ei

β is the p-vector of regression parameters

Note: this is a special case of the general linear mixed model with
diagonal covariance structure
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Model-based estimators

The Fay-Herriot Model

Under above mentioned assumptions

Em[θ̂diri ] = Em[xTi β + ui + ei ] = xTi β

MSEm(θ̂diri ) = Vm(θ̂diri ) = Em[(θ̂diri − xTi β)2]

= Em[(xTi β + ui + ei − xTi β)2]

= Em[u2
i + e2

i + 2uiei ] = σ2
u + ψ2

i

Under Normality of ui s and ei s and under FH model

θ̂diri ∼ N(xiβ, σ
2
u + ψ2

i )
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Model-based estimators

The Fay-Herriot Model

The Best Linear Unbiased Predictor (BLUP) is obtained minimizing
MSEm(θ̂diri )

θ̂diri = xTi β + ui + ei = xTi a + b, θ̂diri is a linear estimator

Em[θ̂diri ] = xTi β = Em[θi ], θ̂
dir
i is an unbiased estimator (under FH

model)

minθ̂diri
MSEm(θ̂diri ) →

θ̃BLUPi = xTi β̃ +
σ2
u

σ2
u + ψ2

i

(θ̂diri − xTi β̃) = xTi β̃ + ui (2)

so θ̃BLUPi is the best linear unbiased predictor
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Model-based estimators

The Fay-Herriot Model

The BLUP can be rewritten as follows

θ̃BLUPi = γi θ̂
dir
i + (1− γi )xTi β̃

γi =
σ2
u

σ2
u+ψ2

i

σu is unknown

β̃ = (XTV−1X)−1XTV−1θ̂
dir

ψ2
i is assumed known (actually is the estimated MSE of direct

estimate)

θ̃BLUPi is a composite estimator
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Model-based estimators

The Fay-Herriot Model

Using the joint distribution f (θ̂diri , ui ) under the Normality
assumption we can get the Restricted Maximum Likelihood (REML)
estimates of σu, say σ̂u

so β̂ = (XT V̂
−1

X)−1XT V̂
−1

θ̂
dir

where X = [x1, . . . , xm] and θ̂
dir

= [θ̂dir1 , . . . , θ̂dirm ]T

and V̂ = diag
{ σ̂2

u

σ̂2
u+ψ2

1
, . . . ,

σ̂2
u

σ̂2
u+ψ2

m

}
ûi =

σ̂2
u

σ̂2
u+ψ2

i
(θ̂diri − xTi β̂)

Given that

ûi need both the estimates of σ̂u and β̂ and,
β̂ need the estimates of σ̂u

then there is need of an iterative algorithm to obtain these estimates
(e.g. Fisher scoring algorithm)
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Model-based estimators

The Fay-Herriot Model

Pluggin in β̂ and ûi into (2) we get the Empirical BLUP (EBLUP)

θ̂EBLUPi = xTi β̂ + ûi = xTi β̂ +
σ̂2
u

σ̂2
u + ψ2

i

(θ̂diri − xTi β̂) (3)

The EBLUP in equation 3 can be rewritten as follows

θ̂EBLUPi = γ̂i θ̂
dir
i + (1− γ̂i )xTi β̂

γ̂i =
σ̂2
u

σ̂2
u+ψ2

i

γ̂i s are known as shrinkage factors
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Model-based estimators

MSE of BLUP under FH model

The BLUP ca be expressed as

θ̃BLUPi = xTi β + γi (θ̂
dir
i − xTi β)︸ ︷︷ ︸

Estimator when β is known

+(1− γi )xTi (β̃ − β)

The MSE of BLUP is

MSEm(θ̃BLUPi ) = MSEm[xTi β + γi (θ̂
dir
i − xTi β) + (1− γi )xTi (β̃ − β)]

= Vm(xTi β + γi (θ̂
dir
i − xTi β)) + Vm((1− γi )xTi (β̃ − β))

= g1i (σu) + g2i (σu)

it can be shown that xTi β + γi (θ̂
dir
i − xTi β) and (1− γi )xTi (β̃ − β)

are uncorrelated
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Model-based estimators

MSE of BLUP under FH model

g1i (σu) = Vm(xTi β + γi (θ̂
dir
i − xTi β)) = σ2

u −
σ4
u

σ2
u+ψ2

i
= γiψ

2
i

g2i (σu) = Vm((1− γi )xTi (β̃ − β)) = (1− γi )2xi

(∑m
i=1 xix

T
i

σ2
u+ψ2

i

)−1

xi

g1i (σu) is the variance of the BLUP estimator when all the
parameters are known

g2i (σu) accounts for the variability in the estimator β̃

Remark: at this stage σ2
u is considered known
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Model-based estimators

MSE of EBLUP under FH model

The error in the EBLUP estimator can be decomposed as follow

θ̂EBLUPi − θi = (θ̃BLUPi − θi ) + (θ̂EBLUPi − θ̃BLUPi )

Then

MSEm(θ̂EBLUPi ) = Em[(θ̂EBLUPi − θi )2]

= Em[((θ̃BLUPi − θi ) + (θ̂EBLUPi − θ̃BLUPi ))2]

= MSEm(θ̃BLUPi ) + Em[(θ̂EBLUPi − θ̃BLUPi )2]

+ 2Em[(θ̃BLUPi − θi )(θ̂EBLUPi − θ̃BLUPi )]
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Model-based estimators

MSE of EBLUP under FH model

Under Normality assumptions made on ui s and ei s

Em[(θ̃BLUPi − θi )(θ̂EBLUPi − θ̃BLUPi )] = 0

So the MSEm(θ̂EBLUPi ) reduces to

MSEm(θ̂EBLUPi ) = MSEm(θ̃BLUPi ) + Em[(θ̂EBLUPi − θ̃BLUPi )2]

It follows that MSEm(θ̂EBLUPi ) > MSEm(θ̃BLUPi )

The term Em[(θ̂EBLUPi − θ̃BLUPi )2] is intractable. Often heuristic
approximation are used.
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Model-based estimators

MSE of EBLUP under FH model

Using Taylor linearization to approximate Em[(θ̂EBLUPi − θ̃BLUPi )2] it
is possible to show the follow

Em[(θ̂EBLUPi − θ̃BLUPi )2] ≈
(
∂γ

∂σ2
u

)2

V̄(σ̂2
u) = g3i (σ

2
u)

V̄(σ̂2
u) is the asymptotic variance of σ̂2

u

V̄(σ̂2
u) = 2

[ m∑
i=1

1

(σ2
u + ψ2

i )2

]−1

obtained from the Fisher information in REML (or ML) estimation

So the third term in MSEm(θ̂EBLUPi ) is

g3i (σ
2
u) =

ψ4
i

(σ2
u + ψ2

i )3
2

[ m∑
i=1

1

(σ2
u + ψ2

i )2

]−1
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Model-based estimators

MSE of EBLUP under FH model

The MSE of EBLUP is

MSEm(θ̂EBLUPi ) = MSEm(θ̃BLUPi ) + Em[(θ̂EBLUPi − θ̃BLUPi )2]

MSEm(θ̃BLUPi ) = g1i (σ
2
u) + g2i (σ

2
u)

Em[(θ̂EBLUPi − θ̃BLUPi )2] ≈ g3i (σ
2
u)

Then MSEm(θ̂EBLUPi ) ≈ g1i (σ
2
u) + g2i (σ

2
u) + g3i (σ

2
u)

Next step is to estimate MSEm(θ̂EBLUPi )
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Model-based estimators

Estimation of MSE of EBLUP under FH model

Let’s plugging in the formula of MSEm(θ̂EBLUPi ) the REML estimate
of σ2

u

mse1(θ̂EBLUPi ) = g1i (σ̂
2
u) + g2i (σ̂

2
u) + g3i (σ̂

2
u)

Em[mse1(θ̂EBLUPi )] = Em[g1i (σ̂
2
u)] + Em[g2i (σ̂

2
u)] + Em[g3i (σ̂

2
u)]

where

Em[g2i (σ̂
2
u)] ≈ g2i (σ

2
u)

Em[g3i (σ̂
2
u)] ≈ g3i (σ

2
u)

but Em[g1i (σ̂
2
u)] 6≈ g1i (σ

2
u)

There is need to evaluate the bias of g1i (σ̂
2
u) so to obtain an

approximately correct estimator of the MSE
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Model-based estimators

Estimation of MSE of EBLUP under FH model

Recall that g1i (σ
2
u) = ψ2

i γi = ψ2
i

σ2
u

σ2
u+ψ2

i

and that g1i (σ̂
2
u) = ψ2

i γ̂i = ψ2
i

σ̂2
u

σ̂2
u+ψ2

i

A Taylor expansion of g1i (σ̂
2
u) is

g1i (σ̂
2
u) = g1i (σ

2
u) + (σ̂2

u − σ2
u)
∂g1i (σ

2
u)

∂σ2
u

+
1

2
(σ̂2

u − σ2
u)2 ∂g1i (σ

2
u)

∂σ2
u∂σ

2
u

= ψ2
i

σ2
u

σ2
u + ψ2

i

+ (σ̂2
u − σ2

u)
ψ4
i

(σ2
u + ψ2

i )2
− (σ̂2

u − σ2
u)2 ψ4

i

(σ2
u + ψ2

i )3
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Model-based estimators

Estimation of MSE of EBLUP under FH model

Under the condition E [σ̂2
u] = σ2

u, the expected value of g1i (σ̂
2
u) is

Em[g1i (σ̂
2
u)] ≈ ψ2

i

σ2
u

σ2
u + ψ2

i

+
ψ4
i

(σ2
u + ψ2

i )2
Em[(σ̂2

u − σ2
u)]

− ψ4
i

(σ2
u + ψ2

i )3
Em[(σ̂2

u − σ2
u)2]

= ψ2
i γi + 0− ψ4

i

(σ2
u + ψ2

i )3
V̄(σ̂2

u)

= g1i (σ
2
u)− g3i (σ

2
u)
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Model-based estimators

Estimation of MSE of EBLUP under FH model

So the bias of the MSE estimator, Em[mse1(θ̂EBLUPi )−MSE (θ̂EBLUPi )], is

Em[g1i (σ̂
2
u)] + Em[g2i (σ̂

2
u)] + Em[g3i (σ̂

2
u)]− (g1i (σ

2
u) + g2i (σ

2
u) + g3i (σ

2
u))

= g1i (σ
2
u)− g3i (σ

2
u) + g2i (σ

2
u) + g3i (σ

2
u)− g1i (σ

2
u)− g2i (σ

2
u)− g3i (σ

2
u)

= −g3i (σ
2
u)

Finally, a correct estimator of the MSE of EBLUP is

mse(θ̂EBLUPi ) = g1i (σ̂
2
u) + g2i (σ̂

2
u) + 2g3i (σ̂

2
u)
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Model-based estimators

Recap on mse of EBLUP

g1i (σ̂
2
u) = γ̂iψ

2
i is the leading term of the mse

g2i (σ̂
2
u) = (1− γ̂i )2xi

(∑m
i=1 xix

T
i

σ̂2
u+ψ2

i

)−1

xi

g3i (σ̂
2
u) =

ψ4
i

(σ̂2
u+ψ2

i )3 2

[∑m
i=1

1
(σ̂2

u+ψ2
i )2

]−1

Monica Pratesi - based on April 2016 short course by S. Marchetti Recap on small area estimation



Model-based estimators

The case of out of sample areas

Population is divided into m small areas

A sample is available in m − k areas =⇒ in k areas there are not
observation

We call the k areas out of sample areas (j = 1, . . . , k)

In this case the EBLUP under FH model reduce to a synthetic
estimator

θ̂OUT
j = xTj β̂ j = 1, . . . , k

Remark: Synthetic estimation is possible unless there are auxiliary
variables in out of sample areas
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Model-based estimators

Conclusions

Few data requirements

In many applications the method can reduce the MSE of direct
estimates

Area-level models are used as a standard technique to obtain small
area statistics

For out of sample areas, where there are no sample observations, the
method provides only model based synthetic estimates instead of
estimates that result from the combination of direct estimates
(collected data) and model based estimates

Pros and cons of EBLUP in TZ will be discussed at the end
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