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Block 5: Big data as primary data source

Introduction

Sampling theory:

• Sound mathematical approach to draw valid inference

about finite target populations based on relative small

samples

• Data generating process controlled by design of the

probability sample

• Probability sampling offers a clear frame work to con-

struct optimal sampling strategy (design + estimator)

• Correct for under and over sampling via inclusion prob-

abilities and callibration

• Measuring the uncertainty via variance estimation

• Growing interest in using alternative data sources that

are generated as a by-product of processes not directly

related to statistical production purposes. Referred to

as non-probability data or big data
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Introduction

Non-probability data or big data:

• Unknown to which extend results can be generalized

to an intended target population

• Data generating process is unknown

• Data driven research

• Many examples at CBDS:

– Social media studies; Sentiment index

– Propensity to move from registers

– Text mining from websites (innovative companies

and sustainable companies)

– Hay fever indicator based on scanner data

– Mobile phone data for day time populations

– Measuring increase of urbanisation with satellite

data

– Measuring solar power panels with aerial images
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– Estimating solar power production indirect

• Problem: no clear frame work, apparently each appli-

cation requires a different approach

Three examples in more detail:

• Estimating unmetered photovoltaic power

• Measuring road intensity with road sensors

• Day time population with mobile phone data
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Estimating unmetered photovoltaic power con-

sumption

• Energy accounting requires coherent statistics on

energy related issues

• Statistics on renewable energy for evaluating the agenda

on energy transition and on climate policy

• Production of electricity by domestic photovoltaic

installations

– currently unknown

– incomplete register of PV installations and

assumptions about their average capacity

• Purpose of this project: approximate the amount of

unmetered photovoltaic electricity indirectly
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Estimating unmetered photovoltaic power con-

sumption

Approach

• If PV installations produce a lot of electricity, less

electricity will be taken from the high voltage grid

• Time series data on electricity exchange on the high

power grid

• Meteorological time series data on solar irradiance

• Hidden signal on the amount of solar power produced

by domestic PV installations
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Data

Data

• Time series on electricity exchange from the high power

voltage grid:

– MWh at a daily frequency

– January 1st 2004 through December 31th 2017

– Downloaded from the website of the Dutch

Transmission System Operator (Tennet)

• Meteorological time series data

– Solar irradiance in J/cm2 at a daily level

– Temperature (in 0.1oC) at a daily level

– Day length

– January 1st 2004 through December 31th 2017

– Downloaded from the website of the Royal

Netherlands Meteorological Institute for the same

period.
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Data

Time series
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Figure 1: Available time series for 2016 on a daily frequency.
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Model

Model

• Production of solar power (Pt):

– Irradiance (It)

– Temperature (Tt)

– Day length (Lt)

– Calendar effects (Ct)

• Problem: Electricity demand (Yt) also depend on It, Tt, Dt, Ct
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Model

Figure 2: Directed acyclic graph (DAG) for the solar power causal model,

with I�t solar irradiance, P�t solar power, Y grid power, D total demand, T

temperature, L length of day and C calender effects.

Two causal paths between It and Yt,

It → Pt → Yt (1)

It → Dt → Yt (2)
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Model

Problem: how to isolate the effect of It on Pt:

• Causal modelling (Pearl, 1995)

• Assume independence between Pt and Dt

• Estimate the effect of It on demand Dt

– ARIMAX model for period 2004 - 2010

(Box et al., 2015)

– Yt = f (It, Tt, Lt, Ct)

– βI : effect of It on demand
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Model

Problem: how to isolate the effect of It on Pt:

• Estimate the effect of It on demand Pt

– ARIMAX model for period 20013 - 2017

– Correct Yt for the effect of It on demand:

Ỹt = Yt − βIIt

– Ỹt = f (It, Tt, Lt, Ct)

– β̃I,y: effect of It on Ỹt (year dependent)

• Estimate the daily production of solar power:

P̂t = β̃I,yIt

• Annual estimates: aggregating the daily estimates P̂t
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Results

ARIMAX(p,d,q) model:

• Modelselection based on AIC

• d=1

• AR lags p=6

• MA lages q = 1

• Selected covariates and their interactions: Buelens and

van den Brakel (2018)
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Results

Results of the ARIMAX model fit

Year β̃I,y SE P̂t (MWh) D̂ (MWh) Percentage solar

2013 -0.390 0.787 140,877 101,554,484 0.14%

2014 -1.296 0.797 485,381 99,549,220 0.49%

2015 -2.004 0.755 774,212 100,436,422 0.77%

2016 -3.409 0.828 1,275,643 102,065,655 1.25%

2017 -5.086 0.807 1,867,628 103,223,204 1.81%

• β̃I,y not significantly different form zero

• Clear increase in solar power production

• Demand (D̂): grid power+solar power
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Results

Estimated solar power
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Figure 3: Estimated solar power for the years 2013—2017 in MWh.
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Results

Model evaluation

• Standardized residuals

• Comparison with CBS publications on solar power

production
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Results

Table 1: Diagnostic checks on standardized residuals of the ARIMAX fit data

set A and B.

Diagnostic Data set A Data set B

Skewness -2.17 -1.88

Kurtosis 22.94 19.32

p-value Bowman-Shenton test on normality 0.00 0.00

p-value Box-Ljung test on autocorrelation 0.01 0.00

p-value F-test on heteroscedasticity 0.53 0.39

Figure 4: Standardized residuals of the ARIMAX model with a 95% confidence

interval applied to data set A (left panel) and data set B (right panel).
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Figure 5: Histogram of the standardized residuals of the ARIMAX model with

the empirical distribution and the standard normal distribution for data set A

(left panel) and data set B (right panel).

Figure 6: Correlogram of the residuals of the ARIMAX model with a 95%

confidence interval for data set A (left panel) and data set B (right panel).
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Results
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Figure 7: Comparison of our model results (solid line) with official statistics

published by CBS on total solar energy consumption (dotted line) and the

amount consumed by households (dashed line).

• Solid line ARIMAX estimate

• Dashed line: total solar power estimate (CBS)

includes metered solar power by solar power farms

• Dotted line: solar power household PV installations
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(CBS)

Divergence in 2016 and 2017 might be explained by

unmetered PV installations of companies
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Conclusions

• Statistical information on the use of renewable energy

relevant for SDG indicators and energy transition

• Method to estimate unmetered solar power using data

found on the internet

• Results do not disagree with CBS publications

• Improvements

– Time series models (STM?)

– More realistic modelling of interactions between

temperature and production of solar power

– Multivariate approach for regional estimates

– Account for increase of unmetered wind energy
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