Intensive Courses in the context of the Jean Monnet Chair:

Big data in official statistics

Block 3: Bivariate structural time series model for nowcasting

> 14 DECEMBER 2018, UNIVERSITY OF PISA

> > Jan van den Brakel

Introduction

Purpose of this block:

Combining time series from repeated sample surveys with tme series form big data sources

Motivating example

Statistics Netherlands:

- Consumer confidence survey
- Sentiments index derived from social media platforms
- How to use this additional information?
 - Separate statistic
 - As an auxiliary series to improve accuracy and timeliness of the consumer confidence index

Consumer confidence survey

- Consumer Confidence Index (CCI)
- Monthly cross-sectional survey of 1000 respondents
- Stratified simple random sampling (self weighted)
- Computer assisted telephone interviewing
- CCI:
 - 5 questions to measure sentiment of the Dutch population about the economic climate (economic and financial situation last 12 months and expectations next 12 months)

$$-P_{q,t}^{+}, P_{q,t}^{0}, P_{q,t}^{-}, q = 1, ..., 5$$
$$I_{t} = \frac{1}{5} \sum_{q=1}^{5} (P_{q,t}^{+} - P_{q,t}^{-})$$

Questions: economic and financial situation last
 12 months and expectations next 12 months

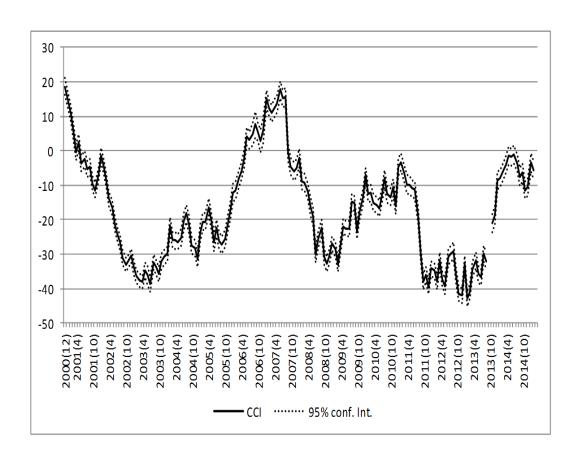
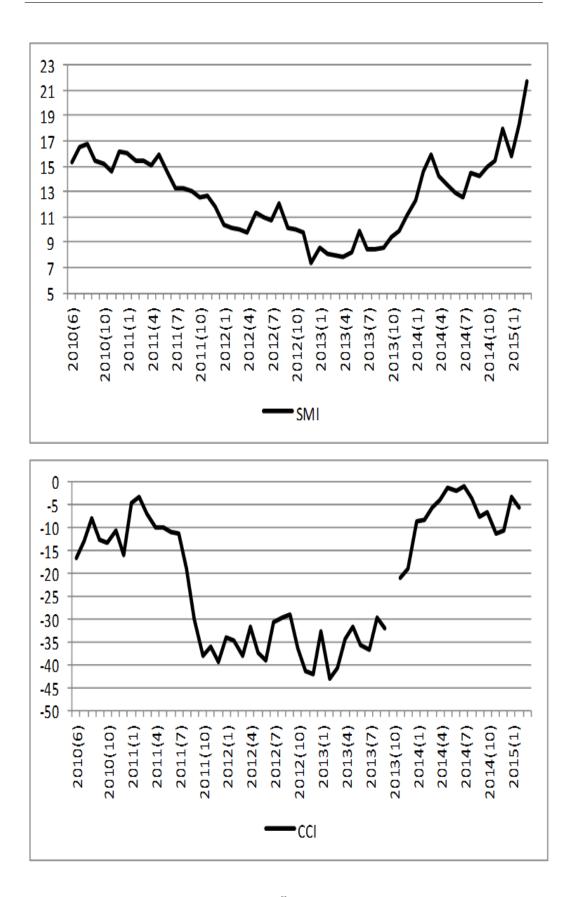


Figure 1: Consumer Confidence Index

Sentiment Index

Sentiment Index Social Media (SMI):

- Derived from Facebook and Twitter (Daas and Puts, 2014)
- Messages are classified as positive or negative
- SMI is the difference between the fraction of positive and negative messages
- High frequency, very timely, no response burden, cost effective



Block 3: Bivariate structural time series model for nowcasting

Figure 2: SMI $(top)^5$ versus CCI (bottom)

Univariate STM CCI

- Measurement error model: $I_t = \theta_t + e_t$
 - $-I_t$: sample estimate CCI
 - $-\theta_t$: population value CCI
 - $-e_t$: sample error
- STM for population value: $\theta_t = L_t + S_t + \epsilon_t$
 - $-L_t$: Smooth trend model

 $-S_t$: Trigonometric seasonal component

- $-\epsilon_t$: population white noise
- STM observed series:

$$I_t = L_t + S_t + \epsilon_t + e_t \equiv L_t + S_t + \nu_t$$
$$-\nu_t \simeq \mathcal{N}(0, \sigma_{\nu}^2)$$
$$-Cov(\nu_t, \nu_{t'}) = 0$$

• Final model CCI:

 $I_t = L_t + S_t + \beta \delta_t^{11} + \nu_t$

 δ_t models a level shift in 2011(9): economic downturn

 $\nu_t \simeq \mathcal{N}(0, \sigma_{\nu}^2)$

In case of heteroscedastic sampling errors:

• Time dependent variance structure: $\nu_t \simeq \mathcal{N}(0, Var(\nu_t))$

$$-Var(\nu_t) = Var(I_t)\sigma_{\nu}^2 \quad Cov(\nu_t, \nu_{t'}) = 0$$

 $- Var(I_t)$: sample variance of I_t

Univariate STM SMI

• Final model SMI series 2010-2015:

$$X_t = L_t + \epsilon_t$$

$$-\epsilon_t \simeq \mathcal{N}(0, \sigma_\epsilon^2)$$

$$-Cov(\epsilon_t, \epsilon_{t'}) = 0$$

- L_t : Smooth trend model
- Weak non-significant seasonal pattern
- No level shift required for 2011(9)

Bivariate time series model CCI and SMI

•
$$\begin{pmatrix} I_t \\ X_t \end{pmatrix} = \begin{pmatrix} L_t^I \\ L_t^X \end{pmatrix} + \begin{pmatrix} S_t \\ - \end{pmatrix} + \begin{pmatrix} \beta^{11} \delta_t^{11} \\ - \end{pmatrix} + \begin{pmatrix} \nu_t^I \\ \epsilon_t^X \end{pmatrix}$$

• Trend:

 $L_{t}^{I} = L_{t-1}^{I} + R_{t-1}^{I}, \qquad L_{t}^{X} = L_{t-1}^{X} + R_{t-1}^{X},$ $R_{t}^{I} = R_{t-1}^{I} + \eta_{t}^{I}, \qquad R_{t}^{X} = R_{t-1}^{X} + \eta_{t}^{X},$ $\begin{pmatrix} \eta_{t}^{I} \\ \eta_{t}^{X} \end{pmatrix} \simeq \mathcal{N}(\mathbf{0}, \Sigma)$ $\Sigma = \begin{pmatrix} \sigma_{\eta_{I}}^{2} & \rho_{\eta}\sigma_{\eta_{I}}\sigma_{\eta_{X}} \\ \rho_{\eta}\sigma_{\eta_{I}}\sigma_{\eta_{X}} & \sigma_{\eta_{X}}^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} d_{1} & 0 \\ 0 & d_{2} \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

If
$$d_2 \to 0$$
 then $\rho_\eta \to 1$, and
 $\eta_t^X = a\eta_t^I, \quad R_t^X = aR_t^I + \bar{R}, \quad L_t^X = aL_t^I + \bar{L} + t\bar{R},$

Strong correlation:

- \bullet More precise estimates for L_t^I and thus I_t
- $d_2 \rightarrow 0$: cointegration
- Trends of both series are driven by one common trend
- Harvey and Chung (2000)

Alternative model :

$$I_t = L_t + S_t + \beta \delta_t^{11} + \gamma X_t + \nu_t$$

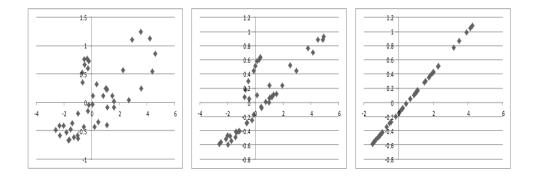
Drawback:

- γX_t absorbs a main part of the trend and the seasonal effect
- L_t residual trend

- Structural time series models expressed as state-space models
- Kalman filter to fit the model
- Maximum likelihood for hyperparameters
- Software: OxMetrics with SsfPack (Doornik, 2009; Koopman et al., 2008)

Results hyperparameters

Maximum likelihood estimates hyperparameters		
Hyperparameter	Bivariate	Univariate
SD slope disturbances trend CCI	1.25	1.18
SD slope disturbances trend SMI	0.25	-
Correlation slope disturbances CCI,SMI	0.92	-
SD seasonal disturbances CCI	7.5E-6	0.0025
SD disturbances measurement eq. CCI	2.68	2.46
SD disturbances measurement eq. SMI	0.84	-
Average SE direct estimates CCI	1.21	

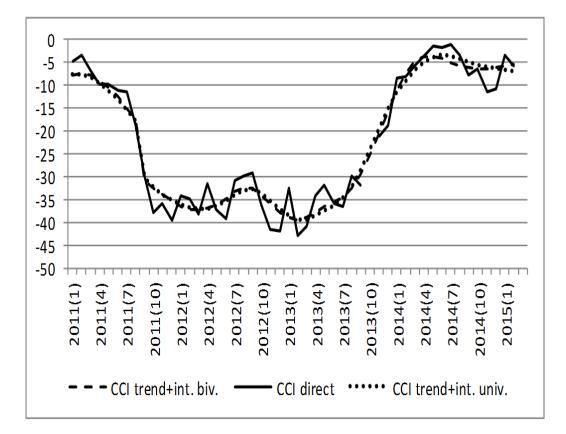


Cross plots slope disturbances CCI (x axis) versus SMI (y axis)

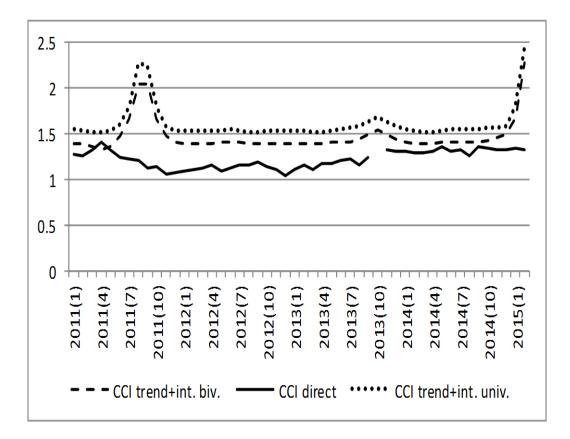
Left: $\rho_{\eta} = 0$ (log likelihood: -234) Middle: $\rho_{\eta} = 0.92$ (log likelihood: -230) Right: $\rho_{\eta} = 1.0$ (log likelihood: -242)

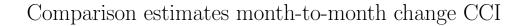
p-value LR test on $H_0: \rho = 0: 0.0047$

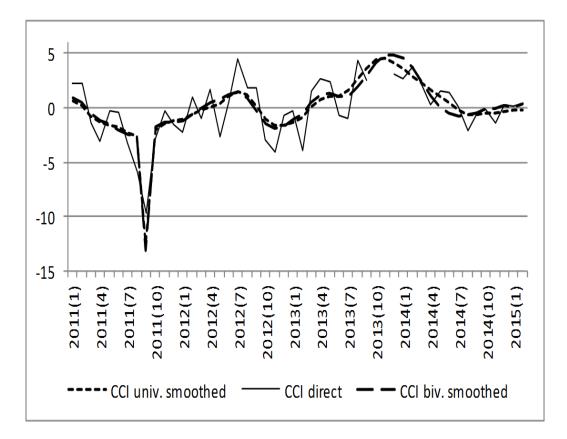
Comparison signal estimates CCI (smoothed estimates)



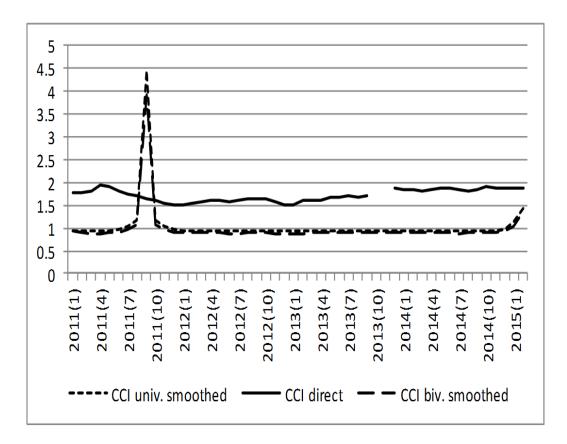
Comparison standard errors of signal estimates CCI







Comparison standard errors month-to-month change CCI

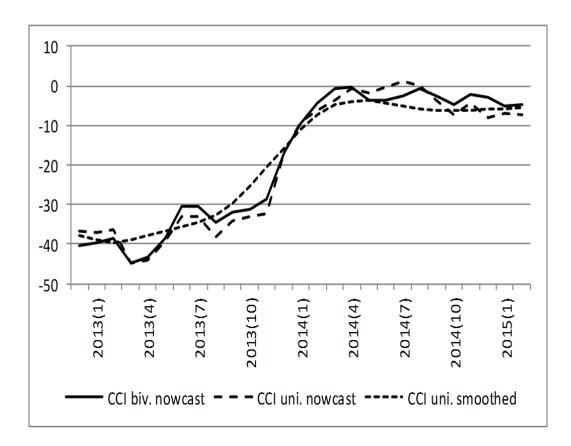


Nowcasting

- Sample surveys are less timely compared to big data sources
- More precise early estimates in real time when SMI is available, but CCI not yet
- Compare:
 - One-step-ahead forecast universate model CCI
 - Estimation with the bivariate model where for the last month CCI is missing
 - Benchmark: smoothed estimates univariate model

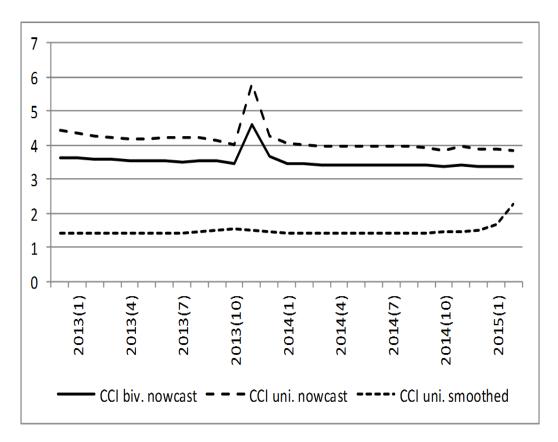
Results nowcasting

Comparison nowcasts bivariate and univariate model CCI



Results nowcasting

Comparison standard errors nowcasts bivariate and univariate model CCI



Discussion

- Official statistics
 - Repeated surveys
 - Time series models appropriate form of SAE
- Bivariate structural time series model
 - Combine series from repeated surveys with auxiliary series
 - Assess similarities between CCI and SMI
 - Improve precision of CCI estimates
 - Form of nowcasting to improve timeliness sample surveys
- Useful approach to borrow strength from auxiliary series and improve timeliness of survey samples
- Details: van den Brakel et al. (2017)

References

- Daas, P. and Puts, M. (2014). Big data as a source of statistical information. *The Survey Statistician* 69, 22–31.
- Doornik, J. (2009). An Object-oriented Matrix Programming Language Ox 6. Timberlake Consultants Press.
- Harvey, A. C. and Chung, C. (2000). Estimating the underlying change in unemployment in the UK. Journal of the Royal Statistical Society, A series 163, 303–339.
- Koopman, S., Shephard, A., and Doornik, J. (2008). Ssfpack 3.0: Statistical algorithms for models in statespace form. Timberlake Consultants, Press London.

van den Brakel, J., Söhler, S., Daas, P., and Buelens, B.

(2017). Social media as a data source for official statistics; the Dutch Consumer Confidence Index. *Survey Methodology* 43, 183–210.