
Intensive Courses in the context

of the Jean Monnet Chair:

Big data in official statistics

Block 2: Structural time series models

14 december 2018,

University of Pisa

Jan van den Brakel



Block 2: Structural time series models

Introduction

Time series models:

1. Box & Jenkens ARIMA models

2. Structural time series models

Ad. 1:

The approach followed by Box and Jenkins (1989) for modelling time series

starts by making an observed series stationary. Informally spoken, this implies

that the trend in an observed series is removed by taking differences between

subsequent periods. Seasonal patterns are removed in a similar way by taking

differences between the observations of the same quarters or months of two

successive years. Once an observed series is made stationary, it is modelled

with autoregressive and moving average components.

Ad. 2:

Structural time series modelling follows a more direct and intuitive approach

(subjective opinion). An observed series is directly modelled without attempt-

ing to remove non-stationarity through differencing of the observed series. This

is the approach followed by authors like Harvey (1989), and Durbin and Koop-

man (2012).
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Structural Time Series Models

Observed series yt, t = 1, . . . , T.

Structural Time Series (STS) models decompose an

observed series in:

1. Trend (Lt)

2. Seasonal (St)

3. Cycles (γt)

4. Regression component (β
′
txt)

5. White noise (It)

Additive model:

yt = Lt + St + γt + β
′
txt + It, t = 1, . . . , T.

Multiplicative model:

yt = Lt × St × γt × β
′
txt × It, t = 1, . . . , T.

(Additive again after taking logs)
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Ad. 1: The trend models the low frequency variation in the observed series.

As will follows, it is modelled with a dynamic model that has the flexibility to

adapt to gradually changes over time. Depending on its flexibility it can both

capture trend and business cycles. If no separate component for the cycle

is included, the trend will be estimated more flexible to capture also cyclic

movements.

Ad. 2: The seasonal component describes the periodic fluctuation within a

period of one year.

Ad. 3: Besides seasonal fluctuations there are also other periodic fluctuations,

e.g. business cycles, with periods longer than a year, than can be modelled

with separate components. In that case it is separated from the trend. We do

not use separate cycle components in the models in this course.

Ad. 4: Related auxiliary series can be included in the model as a regres-

sion component. The regression coefficients can be made time-dependent (by

modelling them as a random walk).

Ad. 5: The unexplained variation in the series is modelled as white noise.
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Local Level Model

Very simple trend model: Lt is a random walk:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + ζt ζt ' N (0, σ2
ζ )

Note:

yt = L0 +

t∑
t=1

ζt + It

• Serial correlation between observations yt. This makes

routine computations from normal regression theory

inefficient

• Filtering and smoothing algorithms developed as an

alternative

• Express STS model as a state space model

• Local level model is already in state space

representation

• Kalman filter to obtain optimal estimates for Lt
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Local Linear Trend Model

Popular trend model for economic time series:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + Rt−1 + ζt ζt ' N (0, σ2
ζ )

Rt = Rt−1 + τt τt ' N (0, σ2
τ )

• Lt often referred to as the level

• Rt interpreted as a slope parameter

• Trend models with random levels are often volatile

Exercise:

• What happens if for the local level model σ2
ζ = 0?

(Illustrate with a graph.)

• What happens if for the local linear model σ2
ζ = 0 and

σ2
τ = 0? (Illustrate with a graph.)
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Smooth Trend Model

Special case of the local linear trend model:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + Rt−1

Rt = Rt−1 + τt ηt ' N (0, σ2
τ )

• Only the slope is random

• Results in more stable trend patterns
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State Space Representation

State space representation STS model:

1. Measurement equation: yt = Zαt + It

• αt: vector with state variables (trend, seasonal,

etc)

• Z: Design matrix measurement equation

• It ' N (0, σ2
I)

2. Transition equation: αt = Tαt−1 + ηt

• T: Design matrix transition equation

• ηt: vector disturbances of the state variables (trend,

seasonal, etc)

• ηt ' N (0,H)

Ad. 1: The measurement equation describes how the observed series depends

on unobserved state variables that describe trend, seasonal components, re-

gression components, etc.

Ad.2: The transition equation describes how the state variables evolve over

time. More precisely; how they change from one period to the next.
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Exercise

Give the state space representation for the local linear

trend model:

yt = Lt + It It ' N (0, σ2
I)

Lt = Lt−1 + Rt−1 + ζt ζt ' N (0, σ2
ζ )

Rt = Rt−1 + τt τt ' N (0, σ2
τ )
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State space representation local linear trend model

• Measurement equation: yt = Zαt + It

Z = (1 0)

αt = (Lt Rt)
′

⇒ yt = (1 0)

Lt
Rt

 + It

It ' N (0, σ2
I)

• Transition equation: αt = Tαt−1 + ηt

T =

1 1

0 1


ηt = (ζt τt)

′

⇒

Lt
Rt

 =

1 1

0 1


Lt−1

Rt−1

 +

ζt
τt



ηt ' N


0

0

 ,

σ2
ζ 0

0 σ2
τ
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Kalman filter

• Structural time series models in state space form

• Kalman filter to obtain optimal estimates for state

variables (and signal)

• Recursive algorithm that gives optimal estimates for

αt based on the information available at time t

• Assumes that covariance matrices of the measurement

and system equation are known, i.e. σ2
I and H

• ⇒ Kalman filter gives Best Linear Unbiased

Predictions (BLUP) for state variables

• Let at denote the BLUP for αt based on information

available at time t (i.e. the filtered estimate)

• Let Pt denote the covariance matrix of the estimation

errors of at

• Assume that the values for a0 and P0 are known
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Kalman filter recursion

• Prediction equations:

at|t−1 = Tat−1

Pt|t−1 = TPt−1T
′
+ H

The prediction equations follow directly from the transition equation.

• From the measurement equation it follows:

ŷt|t−1 = Zat|t−1

• Innovation (new information if yt becomes available):

νt = yt − ŷt|t−1 = Z(αt − at|t−1) + It

• Variance innovations

ft = ZPt|t−1Z
′
+ σ2

I

The variance of the innovations follows directly from the measurement

equation.
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• Updating equations (BLUP for αt):

at = at|t−1 +
νt
ft

Pt|t−1Z
′

Pt = Pt|t−1 −
1

ft
Pt|t−1Z

′
ZPt|t−1

The updating equations follow from the assumption that α0, It, and ηt

are multivariate normally distributed and subsequently the conditional

distribution of αt given yt. For a proof see Harvey (1989), Ch. 3.

• To start the filter recursion it is assumed that σ2
I ,H, a0,

and P0 are known

• In practise:

– σ2
I and H are replaced by their ML estimates

– Diffuse initialization of the Kalman filter, i.e.

a0 = 0

P0 = κI

with e.g. κ = 107
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Smoothing

• Kalman filter recursion runs from t = 1, ..., T and

gives BLUP’s for αt given information obtained until

period t

• Smoothing improves at using information obtained

after period t

• Widely applied smoothing algorithm: fixed interval

smoother

• Recursive algorithm that starts with the final

quantities aT and PT and runs back from

t = T − 1, ..., 1

• Smoothed BLUP’s of αt:

at|T = at + PtT
′
P−1
t+1|t(at+1|T −Tat)

• Covariance matrix of prediction errors of at|T :

Pt|T = Pt + PtT
′
P−1
t+1|t(Pt+1|T −Pt+1|t)P

−1
t+1|tTPt
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Seasonal components

• Model a cycle with a period of one year

• Models:

– Dummy seasonal model

– Trigonometric seasonal models
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Dummy seasonal model

• Seasonal pattern constant in time:

J∑
j=1

S∗j = 0

• Monthly data: J = 12

• Seasonal effect for period t corresponding to month j:

St = S∗j

• Time dependent seasonal pattern:

J−1∑
j=0

St−j = ωt

ωt ' N (0, σ2
ω)

so : St = −
J−1∑
j=1

St−j + ωt

• Basic Structural Time series Model (BSM):

yt = Lt + St + It

(Series = trend + dummy seasonal + white noise)
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Dummy seasonal model - state space form

• Measurement equation: yt = Zαt + It

Z = (1 0 1 0
′

[10]) ≡ (Z[L] Z[S])

αt = (Lt Rt St St−1 St−2 . . . St−10)
′ ≡

α
[L]
t

α
[S]
t


It ' N (0, σ2

I )

• Transition equation: αt = Tαt−1 + ηt ⇔

Lt

Rt

St

St−1

St−2

St−3

...

St−9

St−10



=



1 1 0 0 0 . . . 0 0

0 1 0 0 0 . . . 0 0

0 0 −1 −1 −1 . . . −1 −1

0 0 1 0 0 . . . 0 0

0 0 0 1 0 . . . 0 0

0 0 0 0 1 . . . 0 0

... . . .
...

0 0 0 0 0 . . . 0 0

0 0 0 0 0 . . . 1 0





Lt−1

Rt−1

St−1

St−2

St−3

St−4

...

St−10

St−11



+



0

ηt

ωt

0

0

0

...

0

0



⇔

α
[L]
t

α
[S]
t

 =

 T[L] O[2×11]

O[11×2] T[S]

α
[L]
t−1

α
[S]
t−1

+

η
[L]
t

η
[S]
t


T[S] =

 −j
′

[10] −1

I[10×10] 0[10]


η
[S]
t = (ωt 0

′

[10])
′

ηt ' N
(
0[13],Diag(0 σ2

η σ2
ω 0

′

[10])
)
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Notation:

• O[p×q]: p× q matrix with elements equal to 0

• I[p×p]: p× p identity matrix

• 0[p]: p column vector with elements equal to 0

• j[p]: p column vector with elements equal to 1
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Trigonometric seasonal model

• More flexibility but also more complicated

• Describes yearly cycle with a set of harmonics:

St =

J/2∑
j=1

γj,t

γj,t = γj,t−1 cos

(
π j

J/2

)
+ γ∗j,t−1 sin

(
π j

J/2

)
+ ωj,t

γ∗j,t = γ∗j,t−1 cos

(
π j

J/2

)
− γj,t−1 sin

(
π j

J/2

)
+ ω∗j,t

ωj,t ' N (0, σ2
ω) ω∗j,t ' N (0, σ2

ω)

j = 1, . . . , J/2

• Last harmonic:

– γ∗6,t is not required for the measurement equation

and does not influence other γ′s

– γ6,t = −γ6,t−1 since cos(π) = −1 and sin(π) = 0

– Therefore C6 = −1 in the design matrix of the

transition equation T[S] at page 8

• More general: ωj,t ' N (0, σ2
ω,j) and ω∗j,t ' N (0, σ2

ω,j)
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Trigonometric seasonal model - state space form

• Measurement equation: yt = Zαt + It

Z = (Z[L] Z[S]), Z[S] = (1 0 1 0 1 0 1 0 1 0 1)

αt =

α
[L]
t

α
[S]
t

 , α
[S]
t = (γ1t γ

∗
1t γ2t γ

∗
2t γ3t γ

∗
3t γ4t γ

∗
4t γ5t γ

∗
5t γ6t)

′

It ' N (0, σ2
I )

• Transition equation: αt = Tαt−1 + ηt ⇔α
[L]
t

α
[S]
t

 =

 T[L] O[2×11]

O[11×2] T[S]

α
[L]
t−1

α
[S]
t−1

+

η
[L]
t

η
[S]
t


T[S] = Blockdiag(C1 C2 C3 C4 C5 − 1)

Cj =

 cos
(
π j
J/2

)
sin
(
π j
J/2

)
− sin

(
π j
J/2

)
cos
(
π j
J/2

)
 j = 1, . . . , 5.

η
[S]
t = (ω1,t ω

∗
1,t ω2,t ω

∗
2,t ω3,t ω

∗
3,t ω4,t ω

∗
4,t ω5,t ω

∗
5,t ω6,t)

′

ηt ' N
(
0[13],H

)

H =

 H[L] O[2×11]

O[11×2] H[S]

 H[S] = σ2
ωI[11]
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Further reading

More details on modelling seasonal effects in structural time series models:

• Harvey (1989), Section 4.1: dummy seasonal and trigonometric seasonal

models

• Durbin and Koopman (2012), Section 3.2: dummy seasonal and trigono-

metric seasonal models
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Multivariate State Space Models

• Measurement equation: yt = Zαt + It

with yt = (y1,t, ..., yn,t)
′

It ' N (0,G)

G = Diag(σ2
I1
, ..., σ2

In
)

• Transition equation: αt = Tαt−1 + ηt

ηt ' N (0,H)

21



Block 2: Structural time series models

Multivariate State Space Models

• Kalman filter recursion:

– Prediction equations:

at|t−1 = Tat−1

Pt|t−1 = TPt−1T
′
+ H

– Updating equations:

at = at|t−1 + Pt|t−1Z
′
F−1
t (yt − ŷt|t−1)

Pt = Pt|t−1 −Pt|t−1Z
′
F−1
t ZPt|t−1

– Covariance matrix innovations:

Ft = ZPt|t−1Z
′
+ G

• Required:

– values for hyperparameters G and H

– initial values for a0 and P0

22



Block 2: Structural time series models

Initialization Kalman filter

• Starting values for the Kalman filter: a0 and P0

• Sometimes a-priori information: exact initialization

• If there is no a-priori information; distinguish between

– Non-stationary state variables:

∗ Diffuse initialization

∗ a0 = 0

∗ P0 = κI with κ = 107

– Stationary state variables:

∗ Exact initialization

∗ a0 = 0 (expected value)

∗ P0 derived from its process

• State space model with d non stationary state

variables

• First d observations are used to construct a proper

distribution for the non-stationary state variables
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Hyperparameters

• Kalman filter assumes variance components are known

• Generally unknown

• Therefore replaced by Maximum Likelihood (ML)

estimates

• Ψ = (σ2
I1
, σ2

ζ1
, σ2

τ1
, σ2

ω1
, ..., σ2

In
, σ2

ζn
, σ2

τn
, σ2

ωn
)

σ2
I1
, ..., σ2

In
: variances disturbance terms measurement equation

σ2
ζ1
, ..., σ2

ζn
: variances level disturbance terms of the trend component

σ2
τ1
, ..., σ2

τn : variances slope disturbance terms of the trend component

σ2
ω1
, ..., σ2

ωn
: variances seasonal disturbance terms

• ML assumes independently distributed observations

• Observations yt, t = 1, ..., T are dependent

• Likelihood function must account for dependency through

the so-called prediction error decomposition

• Joint density function time series: L(yT , ...,y1; Ψ)

• Since p(a, b) = p(a|b)p(b), it follows that

L(yT , ...,y1; Ψ) = L(yT |yT−1, ...,y1; Ψ)L(yT−1, ...,y1; Ψ)
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• Repeatedly applying gives an expression for the joint

likelihood:

L(yT , ...,y1; Ψ) =
[∏T

t=2L(yt|yt−1, ...,y1; Ψ)
]
L(y1; Ψ)

• From the assumption that disturbances ηt and It and

the initial state vector are normally

distributed and from the derivation of the Kalman

filter it follows that conditionally on (yt−1, ...,y1), yt

is normally distributed with mean ŷt|t−1 = Zαt|t−1

with covariance matrix Ft = ZPt|t−1Z
′
+ G

• This gives the following expression for the log of the

likelihood function:

Log[L(yT , ...,y1; Ψ)] = −nT
2
Log(2π)− 1/2

T∑
t=1

Log(|Ft|)

−1/2

T∑
t=1

(yt−ŷt|t−1)
′
F−1
t (yt−ŷt|t−1) (1)

• Note that the likelihood L(yT , ...,y1; Ψ) is

decomposed in the probability density function of the

innovations. Therefore this approach is called the
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prediction error decomposition

• ML estimates for Ψ is obtained by maximizing (1)

with respect to the elements of Ψ

• Generally with a numerical procedure that repeatedly

runs the Kalman filter

• For details see for example Harvey (1989), Section 3.2
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Initialization Kalman filter:

• State space model with d non-stationary diffuse state

variables

• First d observations are used to construct a proper

distribution for the non-stationary state variables

• Log likelihood function is evaluated using observations

t = d + 1, ..., T

• Makes likelihoods incomparable for models with

different numbers of non-stationary variables
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Model evaluation

Model assumptions:

• Disturbance terms measurement and transition

equations are normally and serially independent

distributed

• ⇒ Innovations or one-step forecast errors are normally

and serially independent distributed

Follows from the prediction error decomposition.

• Model diagnostics are focussed on checking the

assumption that standardized innovations are

standard normal distributed

Standardized innovations:

ν̃t =
νt√
ft

with:

νt = yt − ŷt|t−1

ft = V ar(νt) = ZPt|t−1Z
′
+ σ2

I

Recall that the first d time periods are ignored in the

evaluation of the likelihood function for d diffuse state

variables.
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Normality:

• First four moments:

– Mean:

m1 =
1

(T − d)

T∑
t=d

ν̃t

– Moments q = 2, 3 and 4:

mq =
1

(T − d)

T∑
t=d

(ν̃t −m1)q

– Skewness:

S =
m3√
m3

2

' N
(

0,
6

(T − d)

)
– Kurtosis:

K =
m4

m2
2

' N
(

3,
24

(T − d)

)
– Bowman-Shenton test on normality

N = (T − d)

(
S2

6
+

(K − 3)2

24

)
' χ2

2

– QQ-plots

– Histogram
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– Plot of ν̃t for t = d, . . . , T with 95% confidence

interval

Heteroscedasticity:

F-test:

F =

∑h+d
t=d ν̃

2
t∑T

t=T−h−d+1 ν̃
2
t

' F h
h

F-test based on the sum over squared innovations for two exclusive subsets of

the sample of equal length h.

Serial correlation:

• Autocorrelogram based on autocorrelations

cj =
1

T − d

T∑
t=d+j+1

(ν̃t −m1)(ν̃t−j −m1)

m2

for j = 1, . . . , 12 (or 24) 95% confidence interval:[
1.96√
(T−d)

, −1.96√
(T−d)

]
• Liung Box test

Q = (T − d)(T − d + 2)

h∑
j=1

c2
j

T − d− j
' χ2

h
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• Durbin-Watson test

See Durbin and Koopman (2012) Section 2.12 and 7.5 for more details.
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Model selection and comparison

Likelihood-based diagnostics:

• Akaike information criterion

AIC =
1

(T − d)
[−2log(L) + 2(q + p)]

• Bayesian information criterion

BIC =
1

(T − d)
[−2log(L) + log(T − d)(q + p)]

q: number of hyperparameters (estimated with ML)

p: number of state variables

d: number of non-stationary state variables

L: Likelihood (see Block 10)

• Nested models: Likelihood ratio test

LR = 2 ∗ [ log(L[Malt])− log(L[Mnull]) ] ' χ2
r

– Malt: extended model under alt. hypothesis

– Mnull: reduced model under the null hypothesis

– r: d.f. ⇒ number of parameters equal to zero
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– Example of nested models: if one or more

hyperparameters are assumed to be zero

– Remark: likelihoods are difficult to compare for

models with different numbers of non-stationary

variables

– Trick: Exact initialization with smoothed estimates

for state variables

• Evaluate the contribution of state variables: plots of

the smoothed estimates with 95% confidence interval

See Durbin and Koopman (2012) Section 7.4 for more details.
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Exercise

Which models are nested?

1. yt = Lt + St + It versus yt = Lt + It

2. Model with local linear trend model versus model with

a smooth trend model (see Block 3 for definitions)

3. Model with a time dependent dummy seasonal com-

ponent versus a model with time invariant seasonal

component

4. Model with time dependent dummy seasonal compo-

nent with time dependent trigonometric seasonal com-

ponent
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Software

Software for STM:

• Eviews

• SAS

• R: package KFAS

• Oxmetrics:

– STAMP

– Ssfpack
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