
Miscellaneous Introduction R fundamentals and programming Exercises References

R and Simulation

Computational Statistics

Lesson 1

G. Bertarelli1

1Dept. of Economics & Management -University of Pisa

November, 9th, 2018

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

The presentation at a Glance

Miscellaneous
Contacts & Syllabus

Introduction
Introduction

R fundamentals and programming
Basic tools

Exercises

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Contacts

F Gaia Bertarelli, Postdoc Researcher in Statistics, University of Pisa

F e-mail: gaia.bertarelli@ec.unipi.it

F phone: (+39) 050 2216229

F webpage: https://people.unipi.it/gaia_bertarelli/

Bertarelli

R and Simulation - Lesson 1

gaia.bertarelli@ec.unipi.it
https://people.unipi.it/gaia_bertarelli/

Miscellaneous Introduction R fundamentals and programming Exercises References

Syllabus

F R fundamentals and programming;

F LaTeX and RStudio;

F Pseudo-random numbers and variates generation;

F Monte Carlo methods for numerical integration;

F Special Topics - Outlier Robust Finite Population Estimation.

The course main follows (in the �rst part of the program)
R and Introductionn to Simulation by Federico Andreis, University of Stirling.

and
Robert, Christian P., George Casella, and George Casella. Introducing monte

carlo methods with R Vol. 18. New York: Springer, 2010.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

Introduction

F Simulationa are a way to model / imitate events in di�erent application.
F Two main kinds of simulations:

• Deterministic: when it is possible to control all the variables that contribute
to the simulation context;

• Stochastic: the experiment of interest takes place under the in�uence of
unknown events attributable to chance.

F In this course we focus on Stochastic Simulations, which imply the use of
probability theory.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

F A history of simulation can be written from many perspectives: uses of
simulation (analysis, training, re-search); types of simulation models
(discrete-event, continuous, combined discrete-continuous); simulation
programming languages or environments and application domains or
communities of interest (communications, manufacturing, military,
transportation,political-economic).

F In Statistics, simulations are employed as estimation methods (Monte
Carlo Markov Chain, Resampling, E-M algrithm) as well as in research
(e.g., to analyse the properties of an estimator having a structure that is
too complex to be handled analytically).

F The development of simulation is connected to the advancement of
technology and computer science (Goldsman et al., 2010; Rosen, 2013).

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

Pros and cons of simulations

F While analytical framework can provide an exact result, simulations yield
an empirical result, i.e. a number which is valid for the particular simulated
experiment only.

F Using simulations it is possible to provide e�cient numerical solutions
when:

• the structure of the model at study is too complex to exploit the analytical
(exact) approach

• an exact analytical result is obtainable only under strong working
hypotheses that are unlikely to hold true in reality

• analytical results exist only as approximations or asymptotically, therefore,
in turn, not exact themselves.

F Whenever available - or obtainable with acceptable e�ort and expenses -
the exact analytical result is beyond doubt to be preferred to the
simulative result.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

Naylor et al. (1966) present 12 reasons why simulations can be an adequate
tool to obtain results:

F simulations make it possible to experiment systems with complex inner
structures

F through simulations, it is possible to study the e�ect of changes on the
behaviour of a system

F a thorough observation of a system we wish to simulate can lead to a
better understanding of the system itself

F simulations can be used as a pedagogical device to educate students and
users about theoretical and statistical analysis and applied decision theory

F simulation of real systems seems a useful tool to stimulate interest in the
audience

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

F the very same experience of structuring and organizing a computer-based
simulation might be even more useful than the results themselves, because
it often suggests interesting insights on the system at study

F simulation of complex systems helps to better understand what the most
important variables and their interactions are

F simulations allow to experiment new scenarios we have little knowledge of

F simulations might be useful as preventive tests for policies and decisions
before risking real application

F simulations can give useful indications on how to split a complex system in
less involved sub-systems

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

F simulations allow to study dynamic systems in time

F when new components are introduced a system, simulation can be useful
to predict bottlenecks or other problems that might occur in the real
system.

One of the most important characteristic of a computer-based simulation is
that it is reproducible, i.e. it can be replicated under the same conditions as
many times as wished. This is of particular relevance in that it allows to verify
the e�ects of any variation arti�cially introduced in the experiment. Moreover,
simulations are �exible, as opposed to the (usually strict) requirements and
working hypotheses of the analytical framework

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Introduction

What about the cons?

F simulative solutions are fundamentally imprecise and not exact

F under the practical aspect, simulations are a slow and costly method to
analyse a system

F huge implementation e�ort and usually call for a considerable amount of
machine-time to produce a result

F simulations yield numerical solution, i.e. strictly connected to the speci�c
simulated case, rather than general theoretical that are valid in general; in
order to generalise the simulative results to wider classes of problems
similar to the one at study, the only possibility seems to be to conduct
series of simulations, manipulating the involved variables to recreate
several characterizations of the real system under as many scenarios as
possible, which leads to lengthier, costlier, and more complex simulations.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Why R?

F R is open-source (free)

F R is object-oriented, which allows for e�cient handling of complex
structures (�exible and object oriented)

F R provides a powerful interface to integrate programs written in other
languages (easily interfaceable)

F R has a huge, active and constantly evolving users-based community
(community-supported)

F R has amazing graphical capabilities (highly graphically skilled).

R, with its ever-growing number of interfacing packages, provides a great help
in making integration easier, even without speci�c knowledge of advanced
computer science.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

References about R

F o�cial manuals here: http://cran.r-project.org/

F books: Adler (2010); Crawley (2012); Grolemund (2014); Matlo� (2011)

F the whole Use R! series published by Springer, in which you can �nd
specialized texts on variety of topics (we will use Introducing Monte Carlo
Methods with R Authors: Robert, Casella.)

F the funny guide The R Inferno, by Patrick Burns, available here:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf.
'If you are using R and you think you're in hell, this is a map for you'.

Bertarelli

R and Simulation - Lesson 1

http://cran.r-project.org/
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

The RStudio IDE

F When programming, the need to resort to other tools arises: for example,
external text editors, �le managers or web browsers.

F IDE (Integrated Development Environment)

F RStudio (https://www.rstudio.com/)
F In just one screen:

1. a powerful text editor with syntax highlighting, brackets matching (VERY
useful) and buttons/keyboard combinations to submit code snippets to the
console directly (i.e., no need for copy-and-paste nonsense)

2. a workspace browser, a data viewer and the commands history
3. a �le manager, a package manager, a plot tab (where you can browse all

the plot you created, back and forth) and an integrated help tab.

Bertarelli

R and Simulation - Lesson 1

https://www.rstudio.com/

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Organize your work

F There is no general rule on how to organize your working directories
F I create a single directory for each project ProjectName and create then

the following sub-directories
• ProjectName/Code: this is were to save all the .R code snippets
• ProjectName/Data: .txt, .xls, .csv, .dat, .spss, ..., raw and formatted data
�les in general go here

• ProjectName/Literature: did you �nd a paper related to your project?
Put it here!

• ProjectName/Out: any output of your work, e.g. plots, text summaries, ...
• ProjectName/Varia: anything else that doesn't belong to the other
directories (project documentation, call for papers, to-do lists, ...).

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Help functions

R provides a wealth of functions, datasets and packages (more than 6000 now),
de�nitely too many to be able to keep trace of every functionality, syntax or
purpose. Some commands that might come in handy are:

F help(): need to �nd out what function xxx does? simply enter help(xxx)
in the command console (?xxx is an equivalent way to do so). Were you
interested in the help for operators involving special symbols in their
syntax (such as the matrix multiplication operator %*%), do not forget to
put it between apostrophes: ?'%*%'

F help.search(): equivalently, ??, allows for searching the help system for
documentation matching a given character string. Say we want to �nd
every function in every loaded package that deals with optimization, then
we should enter ??optimization; this command also accepts regular
expressions

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F apropos(): accepts a string as an argument, and returns a character
vector giving the names of all objects in the search list matching it; it
might be useful to �nd, for example, all the functions containing the word
glm (apropos('glm'))

F data(): looking for some data? just enter data() on the command line
and a list of all the datasets availabe in the default package datasets and
in the currently loaded libraries, together with a short description thereof,
will appear. These datasets can then be readily examined with the help
command (?nameofthedataset), or loaded into the working space
(data(nameofthedataset)).

If you are having coding problems

F http://stackoverflow.com

F http://www.r-project.org/mail.html.

Bertarelli

R and Simulation - Lesson 1

http://stackoverflow.com
http://www.r-project.org/mail.html

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Packages handling

F R basic installation comes with a number of packages that have been
deemed essential.

F However, you will often need to resort to speci�c functions and routines,
that can be downloaded by one of the many repositories scattered around
the world (wide web).

• install.packages(): as the name states, it allows to install new packages,
provided the exact name is matched, as is
install.packages('nameofthepackage')

• library(): if the package you need is available on your computer, you have
to load it in the current R session, in order for its contents to be at your
disposal; entering library(nameofthepackage) will do exactly this, making
all the functions and datasets in the package available for usage. The
require() command accomplishes the same task, but is intended
speci�cally for use inside functions.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Objects and indexing

F R is an object-oriented programming (OOP) language

F An R object is basically a category, examples are: scalar, vector, matrix,
array, list, time series, data frames, functions and graphics

F An object, say x, is characterized by a mode(x) that describes its contents
and a class(x) that describes its nature

F An object's mode might be one of the following:
• null: empty object
• logical: TRUE or FALSE
• numeric: a real number, such as π, 2 or

√
5− 1

• complex: a complex number, such as 2 + 5i
• character: a string, such as 'normal', 'green', 'M' or 'y=a+bx'

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> x <- 10
> x
[1] 10
> mode(x)
[1] "numeric"
> x <- 10>5
> x
[1] TRUE
> mode(x)
[1] "logical"

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Many functions exist, that can create objects of a speci�c kind, for example:

F c() de�nes a row vector of given elements

F numeric() de�nes an empty vector of given length

F matrix() de�nes a matrix of given number of rows and columns, and
given elements

F array() de�nes an array of given dimensions and elements

F data.frame() de�nes a data-frame object

F list() de�nes a list object, i.e. a special array that can include elements
with various modes

The function str(x) will compactly display the internal structure of an R

object, and is a very useful command, especially when working with complex
ones.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> y <- list(a=c(1,2,3),b=matrix(c(1,2,3,4,5,6),3,2))
> y
$a
[1] 1 2 3

$b
[,1] [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

> mode(y)
[1] "list"
> str(y)
List of 2
$ a: num [1:3] 1 2 3
$ b: num [1:3, 1:2] 1 2 3 4 5 6

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> y$a #extracts component 'a' from list 'y'
[1] 1 2 3
> y$b #extracts component 'b' from list 'y'

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> dim(y$b) #what are the dimensions of matrix 'b'?
[1] 3 2 #3 rows and 2 columns
> y$b[1,] #extracts the first row of matrix 'b'
[1] 1 4
> y$b[,2] #extracts the second column of matrix 'b'
[1] 4 5 6
> y$b[1:2,]#extracts rows from 1 to (:) 2 of matrix 'b'

[,1] [,2]
[1,] 1 4
[2,] 2 5
> y$a[3] #extracts the third element of vector 'a'
[1] 3

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

It is possible to assign values to speci�c elements of an object:

R code

> y$a[3] <- 10 #assign to the third element of vector 'a'
> y$a #the value 10
[1] 1 2 10
> y$b[,1] <- c(2,3,7) #replace the first column of matrix 'b'
> y$b #with a vector having components (2, 3, 7)

[,1] [,2]
[1,] 2 4
[2,] 3 5
[3,] 7 6

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

An array is a matrix in dimensions higher than 2 (a tensor). Indexing works in
the same way, allowing to extract and manipulate information at every level by
means of the square brackets operators [�...,].

R code

> z <- array(runif(24),dim=c(4,3,2))
> #creates an array composed by two 4x3 matrices
> #filled by realizations from a U(0,1) r.v.
> z
, , 1

[,1] [,2] [,3]
[1,] 0.50948231 0.09637384 0.3511716
[2,] 0.76222931 0.49445906 0.9239261
[3,] 0.07748602 0.24500671 0.9360242
[4,] 0.14746812 0.63679512 0.1754347

, , 2
[,1] [,2] [,3]

[1,] 0.4685381 0.9641261 0.9762254
[2,] 0.3219655 0.5849373 0.7358713
[3,] 0.5257197 0.8853259 0.5509927
[4,] 0.7837449 0.4370338 0.9350366

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> z[,,1] #extracts the first matrix
[,1] [,2] [,3]

[1,] 0.50948231 0.09637384 0.3511716
[2,] 0.76222931 0.49445906 0.9239261
[3,] 0.07748602 0.24500671 0.9360242
[4,] 0.14746812 0.63679512 0.1754347
> z[1,,2] #extracts the first row of the second matrix
[1] 0.4685381 0.9641261 0.9762254
> z[,2,1] #extracts the second column of the first matrix
[1] 0.09637384 0.49445906 0.24500671 0.63679512
> z[,1,1] <- 1:4
> #assign the values from 1 to 4 to the first column of
> #the first matrix
> z[,,1] #print the (modified) first matrix

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R math operators usually work element-wise

R code

> x <- c(1,2,5,8) #defines a vector
> 2*x #multiplies every element of x by 2
[1] 2 4 10 16
> x^2 #squares every element of x
[1] 1 4 25 64
> sqrt(x) #extracts square roots
[1] 1.000000 1.414214 2.236068 2.828427

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Indexing allows to apply speci�c operations on chosen parts of an object

R code

> x <- matrix(1:25,5,5)
> .5*x[,1] #multiplies the first column by 0.5
[1] 0.5 1.0 1.5 2.0 2.5
> x[1 ,]^(1/3) #extracts cube roots from the 1st row
[1] 1.000000 1.259921 1.442250 1.587401 1.709976
> x[,1]*x[,2] #element -wise multiplies first and 2nd column
[1] 6 14 24 36 50

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Matrix Algebra

Special operators and functions exist for most of the matrix algebra. Let A and
B be matrices, b a vector; then:

F A*B: element-wise multiplication

F t(A): transpose of a matrix (A′) or a vector (b′)

F A%*%B: matrix multiplication (row by column)

F A%o%B: outer product (AB′)

F crossprod(A,B): matrix crossproduct, equivalent to t(A)%*%B

F diag(A): returns a vector containing the elements of the principal
diagonal; it can also be used to create diagonal matrices, refer to ?diag

F solve(A): inverse (A−1) of a square matrix A

F solve(A,b): returns the solution of the system b = Ax, i.e. x = A−1b

F ginv(A): Moore-Penrose Generalized Inverse of A (requires to load the
MASS package)

F eigen(A): returns eigenvalues and eigenvectors of A

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F svd(A): returns the Singular Value Decomposition of A

F chol(A): returns the Choleski factorization of A

F qr(A): returns the QR decomposition of A

F cbind(): combines matrices (vectors) horizontally, returns a matrix

F rbind(): combines matrices (vectors) vertically, returns a matrix

F rowMeans(A): returns a vector of row means

F rowSums(A): returns a vector of row sums

F colMeans(A): returns a vector of column means

F colSums(A): returns a vector of column sums

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Working space, directories and I/O

F All the objects you create are saved in a working space that can be
browsed, modi�ed and saved for future use.

• ls(): plain execution of this command returns the list of the objects in the
working space

• rm(): this command removes an object matching its argument from the
working space; say we wish to delete the object xxx, then we would enter
rm(xxx) in the console. Particularly useful is the combination
rm(list=ls()), that will remove all the objects from the working space

• getwd(): execution of this command returns the current working directory.
Should the need to use a di�erent working directory arise, the setwd()
command would change the default for the current session. Setting one's
own working directory as default is particularly useful in that every
input/output (I/O) procedure will then refer to it, thus making destination
speci�cations shorter and more convenient.

• list.files(): returns a character vector containing the names of the �les
in the current working directory

• save.image(): if you want to save the current workspace to a �le with
extension .Rdata.

• objects.size(): returns the (estimated) amount of memory that is being
used to store an R object.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Many functions exist, that can read external �les into the R working space,
such as raw data (usually text �les):

• scan(), read.table() and read.csv(): check their help �le for syntax
and usage.

F It is worth noting that many packages exist, among them we mention the
foreign and the readr packages, that contain speci�c routines to import
particular data formats such as, for example, those native of Excel,
Minitab, S, SAS, SPSS and Stata.

F For what concerns text output, R provides many ways to create .txt and
.csv �les:

• write(), write.table(), write.csv() and sink(): check their help �le
for insights.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Output can also take the form of screen text and plots:
• print(): prints its argument on screen
• cat(): prints its argument by concatenation, it is useful for producing
output in user-de�ned functions (for example, printing to screen at what
step of a loop your routine is, or printing in a nice way your function results)

• paste(): often used as an argument to other functions, it allows to paste
together, as a character string, multiple objects (useful, for example, for
plot labels)

• plot(): the base R function for plotting objects, see help

F jpg(), pdf(), png(), and postscript(); read the related help �les and
remember to end every such operation with the dev.off() command.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Other graphical tools include: points(), lines(), segments() and
abline(), that allow you to add, respectively, points, curves, segments
and straight lines to your plots

F curve() command will allow you to plot functions of one variable over a
chosen region of the xy plane

F http://rgraphgallery.blogspot.it/

Bertarelli

R and Simulation - Lesson 1

http://rgraphgallery.blogspot.it/

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Control structures, loops and miscellanea

F R is in general slower than other languages, therefore a proper use of �ow
operators is of great importance

• !, &&, ||, ...: logical operators allows you to evaluate the truth (logical)
value of an R object, check the help for the most common ones by entering
?'!'.

• for: for loops can be used to loop through the values of an object. The
command is of the form for (<index> in <vector>) {<statements>}.
The expressions between curly brackets are executed seperately for each
value in the vector

R code

> x <- c('a','b','c')
> for (i in x) {
+ print(paste("Index=",i))
+ }
[1] "Index=a"
[1] "Index=b"
[1] "Index=c"

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F For loops are very slow. You can improve code readability over more
e�cient solutions such as the *apply functions

F if/else: sometimes, a statement should be executed only if a certain
condition is met. In this case, the if structure can be used, and
complemented by the else control. It is built-up as follows: if
(<logical expression>) {<statements1>} else {<statements2>};
if and else can be nested

R code

> x <- 10
> if(x > 9) {
+ print("x is larger than 9")
+ } else if(x > 7) {
+ print("x is larger than 7, but not larger than 9")
+ } else {
+ print("x is not larger than 7")
+ }
[1] "x is larger than 9"

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F ifelse(): If you need to set, for example, values of variables based on a
vector of logical conditions, then the ifelse statement (which basically is
a vectorized version of if) is the way to go. The syntax is:
ifelse(<condition>,{<yes statements>},{<no statements>})

R code

> x <- -2:2
> ifelse(x>=0, x, -x)
[1] 2 1 0 1 2

F This is equivalent to calling abs(x), i.e. the absolute value function.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F while: it is one of the simplest looping structures, whose syntax is
while(<condition>) {<statements>}. It is used to repeat
<statements> while <condition> remains TRUE. For example, consider
the following loop that stops as soon as a random draw from a Bernoulli
distribution with parameter p = 0.5 equals 1 and stores the number of
draws needed to reach that point

R code

> p <- 0.5 # probability of drawing a 1
> b <- 0 # result of the draw
> number <- 0 # number of draws
>
> while(b != 1)
+ {
+ b <- rbinom(1, 1, p) # draws a Bernoulli variate
+ number <- number + 1 # increments the counter
+ }
>
> print(number) #prints to screen the number of draws

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F repeat: this structure repeats the commands in its body until a break

statement is reached

R code

> k <- 0
> repeat {
+ k <- k + 1
+ if(k > 3) break
+ cat(k, "\n")
+ }
1
2
3
>

F tryCatch(): it provides a mechanism for handling with errors without
breaking the loop

F system.time(): it takes an expression as argument and returns the CPU
times spent to run it

F source(): You can save snippets of code in �les other than your current
one, and then source them for execution in the current session.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Statistical functions

F The R language has been originally written by statisticians

F R has implemented all sort of statistical routines to perform from the
simplest to the most complex task

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Basic statistical functions

F summary(): a generic function that, depending on the class of its
argument outputs a summary thereof.

R code

> x <- iris[,1]
> y <- iris[,2]
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.300 5.100 5.800 5.843 6.400 7.900

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> mod <- lm(y~x)
> summary(mod)
Call:
lm(formula = y ~ x)
Residuals:

Min 1Q Median 3Q Max
-1.1095 -0.2454 -0.0167 0.2763 1.3338
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.41895 0.25356 13.48 <2e-16
x -0.06188 0.04297 -1.44 0.152

Residual standard error: 0.4343 on 148 degrees of freedom
Multiple R-squared: 0.01382,Adjusted R-squared:0.007159
F-statistic: 2.074 on 1 and 148 DF, p-value: 0.1519

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F mean(): generic function for the (possibly trimmed) arithmetic mean.
colMeans() and rowMeans() functions for use with matrices.

F var(), cov(), cor(): these functions compute the variance, covariance
and correlation of, say, x and y if these are vectors; sd() will compute the
standard deviation

F if the argument to cov() (cor()) is a matrix or a data.frame object,
the variance/covariance (correlation) matrix is returned

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Probability distributions

F The default R release features many classic probability distribution
functions, enter ?distributions to see them.

F By convention, all functions related to a particular distribution, say DISTR,
are encoded as follows:

• dDISTR(): density function (with respect to an appropriate probability
space)

• pDISTR(): distribution function
• qDISTR(): quantile function
• rDISTR(): random variates generation

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Example: the Central Beta random variable

F The related functions are then dbeta(),pbeta(),qbeta(), and rbeta()
• dbeta(x, shape1, shape2): returns the value in x of the density function
of a Beta random variables with parameters (shape1,shape2).

R code

> #value of the Beta(2,2) density in x=0.5
> dbeta(0.5, 2, 2)
[1] 1.5

• Plot the Beta density for di�erent combinations of its parameters:

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> curve(dbeta(x,.5,2),ylab='',
+ main='Beta density with shape2 = 2',lwd=2)
> for (i in c(1,10)) curve(dbeta(x,i,2),add=T,
+ col=round(i+1),lwd=2)
> legend('topright ',legend=c('shape1 = 0.5',
+ 'shape1 = 1','shape1 = 10'),col=c(1,2,11),lty=1)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Beta density with shape2 = 2

x

shape1 = 0.5
shape1 = 1
shape1 = 10

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F pbeta(q, shape1, shape2): returns the cumulative density function of a
Beta distribution with parameters (shape1,shape2) in correspondence of
quantile q

R code

> beta.value <- pbeta(0.5,2,3)
> beta.value
[1] 0.6875

F It is possible, for example, to visualize the quantile on the distribution
function plot:

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> curve(pbeta(x,2,3),ylab='',
+ main='Beta(2,3) distribution function ')
> points(0.5,beta.value ,pch=16,col='red')
> segments(c(0,.5),c(beta.value ,0),c(.5 ,.5),
+ c(beta.value ,beta.value),lty=2,col='red')
> text(.06,beta.value+.06,beta.value)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta(2,3) distribution function

x

●

0.6875

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F qbeta(p, shape1, shape2): returns the quantile of order p of a Beta
distribution with parameters (shape1,shape2).

R code

> qbeta(beta.value ,2,3)
[1] 0.5

F If we want to visualize the quantile function

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> curve(qbeta(x,2,3),ylab='', main='Beta(2,3) quantile function ')
> points(beta.value ,0.5,pch=16,col='red')
> segments(0,0.5,beta.value ,.5,beta.value ,lty=2,col='red')
> text(.06,0.5+.06,0.5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta(2,3) quantile function

x

●

0.5

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F rbeta(n, shape1, shape2): generates n realizations from a Beta
distribution with parameters (shape1,shape2).

F How this is accomplished will be described in the next lesson. Now,
imagine we wish to draw a certain number of random variates from this
law and compare their distribution with the theoretical density of a Beta.
First, we obtain the draws

R code

> x <- rbeta(1000,2,3)#draws 1000 variates from Beta(2,3)

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Check whether the sample mean and variance are close to the theoretical
values. Recall that, if X ∼ Beta(α, β), then
E(X) = α

α+β
, V (X) = αβ

(α+β)2(α+β+1)
;

F in this case, since X ∼ Beta(2, 3) we would then expect
E(X) = 0.4, V (X) ≈ 0.04

R code

> mean(x)
[1] 0.4085936
> var(x)
[1] 0.04034115

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Plot the distribution of the random variates and compare it with the true
density:

R code

> #plots the histogram
> hist(x,freq=F,xlim=c(0,1),ylim=c(0,2),
+ main='Random draws from a Beta(2,3)\n and true density ')
> #overimposes the theoretical density
> curve(dbeta(x,2,3),
+ col='red',add=T,lwd=2)

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Random draws from a Beta(2,3)
 and true density

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Statistical modeling

F Several functions exist, that can handle the most common statistical
models;e.g.:

• lm(): �ts classic linear models, and provides a wealth of statistics on
residuals, as well as hypothesis testing on the model's parameters

• glm(): �ts generalised linear models, and takes as input the description of
the linear predictor and of the error term; again, the most common
model-related statistics are computed as a by-product of the routine

• anova(): based on one or more previously �tted model objects, computes
the related analysis of variance (or deviance) tables.

F There are also routines for survival analysis, longitudinal models, time
series, multilevel modeling, partial least squares, structural equations,. . . !

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Hypothesis testing

F The base R release contains functions for many of the most common
statistical tests, such as, for example, t.test() (for one- and two-sample
t-test), ks.test() (for the Kolmogorov-Smirnov one- and two-sample
tests), and wilcox.test() (for the Wilcoxon-Mann-Whitney tests)

F Some testing routing will be used during Lessons 2 and 3.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Statistical plots

F plot(): produces graphical representations based on the class of its
argument

F hist(): it plots an histogram based on a vector of observations
F boxplot(): produces box-and-whisker plot(s) of the given (grouped)

values, based on a data.frame or list object
F density(): computes kernel density estimates based on a vector of

observations
F acf(): computes and plots estimates of the autocovariance or

autocorrelation function based on a vector of observations. Useful when
working with time series, stochastic processes, and when evaluating a
random number generator

F pairs(): plots the pairwise scatterplots based on a matrix or
data.frame object, useful for a �rst visual inspection of a dataset, or to
summarize dependence between pairs of variables

F image(): creates a grid of rectangles with colors corresponding to the
values in a given matrix object (3-dimensional data)

F contour(): creates a contour plot, or add contour lines to an existing plot

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Writing R functions

F One of the most appealing features of R, is that everybody can create new
functions and packages to be made available to all other R users;

F Most of R is actually written in R (apart from a few routines that are
written in C for e�ciency reasons), which means that you could basically
take every function and suitably modify it to meet your needs

F An R function is de�ned by an assignment such as:

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

MyFunction <- function(arg1, arg2, ...) {
expression
...
expression
value

}

F expression is an R statement (possibly involving other functions) that
uses some of the arguments arg1, arg2, ... to compute a value, that
is the outcome of the function

F The curly braces indicate the beginning and the end of the function; it is
also possible to set default values for the arguments

F a function should always output a value, since everything that happens
within those curly braces (unless otherwise speci�ed) is local to the
function itself and, as such, temporary

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Example 1

F Create a function that:
1. takes two vectors as arguments
2. checks if they are of the same length, otherwise returns an error message

R code

length.check <- function(x,y) {#x and y are arg1 and arg2

if (length(x)== length(y)){#the logical condition to be met

print('Same length.')#value condition is TRUE

} else {

print('Different length.')#value if condition is FALSE

}
}

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Test our function

R code

> a <- 1:10
> b <- letters[2:11]
> c <- runif(15)
> length.check(a,b)
[1] "Same length."
> length.check(a,c)
[1] "Different length."
> length.check(b,c)
[1] "Different length."

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Example 2

F We now wish to write a function that:
1. has two arguments, of which the second one defaults to the value 1
2. computes the k−th sample moment of the �rst object (suppose it's a vector

of sample observations), where k is de�ned by the second argument
3. outputs the computed value

R code

#By setting y=1 in the arguments ,
#we define its default value
k.moment <- function(x, y=1) {

value <- mean(x^y) #stores the result

value #outputs the result

}

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F Test our function

R code

> a <- 1:10
> k.moment(a,1)
[1] 5.5
> k.moment(a)
[1] 5.5
> k.moment(a,2)
[1] 38.5
> k.moment(a,3)
[1] 302.5

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

Example 3: probability law not already implemented in R

F Reciprocal Distribution
• continuous random variable with bounded support [a, b] (0 < a < b) and
density f(x; a, b) = [x ln(b/a)]−1

F Code for:
• density function
• distribution function: it is easily obtained by integration and equals
F (q; a, b) = ln(q/a)[ln(b/a)]−1

• quantile function: it is Q = F−1

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

#density function

drec <- function(x,a,b) {

#checks constraints

stopifnot(x>=a&&x<=b&&0<a&&a<b)

#outputs density value

(x*log(b/a))^(-1)

}

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

#distribution function

prec <- function(q,a,b) {

#checks constraints

stopifnot(0<a&&a<b)

#if q<=a, returns 0, otherwise
#if q>=b, returns 1, otherwise
#returns cdf value

ifelse(q<=a,0,
ifelse(q>=b,1,

log(q/a)/log(b/a)))

}

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

#quantile function
qrec <- function(p,a,b) {

#checks constraints

stopifnot(p>=0&&p<=1&&0<a&&a<b)

#computes q numerically by
#finding the zero of 'F(q)-p'
#in [a,b], and returns it

uniroot(
function(x) prec(x,a,b)-p,

lower=a,upper=b)$root

}

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> a <- c(1,2.5,5)
> drec(a,1,10)
[1] 0.4342945 0.1737178 0.0868589

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

R code

> a <- seq(0,1,.3)
> qrec(a,10,15)
[1] 10
Warning messages:
1: In if (is.na(f.lower)) stop("f.lower = f(lower) is NA") :
the condition has length > 1
and only the first element will be used
2: In if (is.na(f.upper)) stop("f.upper = f(upper) is NA") :
the condition has length > 1
and only the first element will be used
3: In if (f.lower * f.upper > 0)
stop("f() values at end points not of opposite sign") :
the condition has length > 1
and only the first element will be used

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Basic tools

F qrec() internally calls uniroot(), that does not accept vector-valued
functions as argument

F to solve this, it su�ces to Vectorize the function

R code

> qrec <- Vectorize(qrec)
> qrec(a,10,15)
[1] 10.00000 11.29347 12.75426 14.40397

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

Exercises

F Using the seq() function, construct the following sequences:
1. integer values from 1 to 10
2. 32 equi-spaced values from 1 to 10
3. values distant 0.15 from eachother, ranging from 1 to 10; how many of

them are there? (Tip: use length()).

F Using the replicate() function, obtain a vector of 1000 realizations of
means from uniform samples of size 100 each. Plot the histogram of the
standardized observation and superimpose a Standard Normal curve (tip:
set freq=FALSE when plotting the histogram).

F Read the help for the iris dataset and describe the variables it contains.
Create a two-pages .pdf document �le with:
1. the pairwise scatter plots for all the involved variables, with di�erent colours

indicating di�erent species on the �rst page
2. the plot of the kernel density estimate of Petal.Length, regardless of the

species and the histogram of Sepal.Length for the versicolor species
only on the second page (tip: ?density).

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

F Read the help for the iris dataset and describe the variables it contains.
Create a two-pages .pdf document �le with:
1. the pairwise scatter plots for all the involved variables, with di�erent colours

indicating di�erent species on the �rst page
2. the plot of the kernel density estimate of Petal.Length, regardless of the

species and the histogram of Sepal.Length for the versicolor species
only on the second page (tip: ?density).

F Write a function that:
1. accepts two arguments a and b, that must be non-negative integer with

default value 1
2. plots the function f(x; a, b) = |cos(e−ax2+bx)| on the range x ∈ [−1, 1]
3. returns the value of

∫ 1
−1 f(x; a, b)dx on screen and saves it in a .txt �le in

the current working directory.

Bertarelli

R and Simulation - Lesson 1

Miscellaneous Introduction R fundamentals and programming Exercises References

References I

Adler, J. (2010). R in a nutshell: A desktop quick reference. " O'Reilly Media, Inc.".

Crawley, M. J. (2012). The R book. John Wiley & Sons.

Goldsman, D., R. E. Nance, and J. R. Wilson (2010). A brief history of simulation
revisited. In Proceedings of the winter simulation conference, pp. 567�574. Winter
Simulation Conference.

Grolemund, G. (2014). Hands-On Programming with R: Write Your Own Functions
and Simulations. " O'Reilly Media, Inc.".

Matlo�, N. (2011). The art of R programming: A tour of statistical software design.
No Starch Press.

Naylor, T. H., J. L. Balintfy, D. S. Burdick, and K. Chu (1966). Computer simulation
techniques. Technical report, Wiley New York.

Rosen, K. (2013). The history of simulation. In The comprehensive textbook of
healthcare simulation, pp. 5�49. Springer.

Bertarelli

R and Simulation - Lesson 1

	Miscellaneous
	Introduction
	Introduction

	R fundamentals and programming
	Basic tools

	Exercises

